Astaxanthin: A Potential Therapeutic Agent in Cardiovascular Disease

Renal Research Royal Brisbane and Women's Hospital and The University of Queensland School of Medicine, Butterfield Street, Brisbane, Queensland 4029, Australia.
Marine Drugs (Impact Factor: 3.51). 12/2011; 9(3):447-65. DOI: 10.3390/md9030447
Source: PubMed

ABSTRACT Astaxanthin is a xanthophyll carotenoid present in microalgae, fungi, complex plants, seafood, flamingos and quail. It is an antioxidant with anti-inflammatory properties and as such has potential as a therapeutic agent in atherosclerotic cardiovascular disease. Synthetic forms of astaxanthin have been manufactured. The safety, bioavailability and effects of astaxanthin on oxidative stress and inflammation that have relevance to the pathophysiology of atherosclerotic cardiovascular disease, have been assessed in a small number of clinical studies. No adverse events have been reported and there is evidence of a reduction in biomarkers of oxidative stress and inflammation with astaxanthin administration. Experimental studies in several species using an ischaemia-reperfusion myocardial model demonstrated that astaxanthin protects the myocardium when administered both orally or intravenously prior to the induction of the ischaemic event. At this stage we do not know whether astaxanthin is of benefit when administered after a cardiovascular event and no clinical cardiovascular studies in humans have been completed and/or reported. Cardiovascular clinical trials are warranted based on the physicochemical and antioxidant properties, the safety profile and preliminary experimental cardiovascular studies of astaxanthin.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Astaxanthin (ATX) is a powerful antioxidant that occurs naturally in a wide variety of living organisms. Previous studies have shown that ATX has effects of eliminating oxygen free radicals and can protect organs from ischemia/reperfusion (IR) induced injury. The present study was designed to further investigate the protective effects of ATX on oxidative stress induced toxicity in tubular epithelial cells and on IR induced renal injury in mice. ATX, at a concentration of 250nM, attenuated 100 ¿M H2O2-inudced viability decrease of tubular epithelial cells. In vivo, ATX preserved renal function 12 h or 24 h post IR. Pretreatment of ATX via oral gavage for 14 consecutive days prior to IR dramatically prevented IR induced histological damage 24 h post IR. Histological results showed that the pathohistological score, number of apoptotic cells, and the expression of ¿-smooth muscle actin were significantly decreased by pretreatment of ATX. In addition, oxidative stress and inflammation in kidney samples were significantly reduced by ATX 24 h post IR. Taken together, the current study suggests that the pretreatment of ATX is effective in preserving renal function and histology via antioxidant activity.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carotenoids are a class of natural, fat-soluble pigments found principally in plants. They have potential antioxidant biological properties because of their chemical structure and interaction with biological membranes. Epidemiologic studies supported the hypothesis that antioxidants could be used as an inexpensive means of both primary and secondary cardiovascular disease (CVD) prevention. In fact, the oxidation of low-density lipoproteins (LDL) in the vessels plays a key role in the development of atherosclerotic lesions. The resistance of LDL to oxidation is increased by high dietary antioxidant intake, so that carotenoids, as part of food patterns such as the Mediterranean diet, may have beneficial effects on cardiovascular health too. Further properties of carotenoids leading to a potential reduction of cardiovascular risk are represented by lowering of blood pressure, reduction of pro-inflammatory cytokines and markers of inflammation (such as C-reactive protein), and improvement of insulin sensitivity in muscle, liver, and adipose tissues. In addition, recent nutrigenomics studies have focused on the exceptional ability of carotenoids in modulating the expression of specific genes involved in cell metabolism. The aim of this review is to focus attention to this effect of some carotenoids to prevent CVD.
    Food & Nutrition Research 02/2015; 59:26762. DOI:10.3402/fnr.v59.26762 · 1.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-energy assisted extraction techniques, like ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE), are widely applied over the last years for the recovery of bioactive compounds such as carotenoids, antioxidants and phenols from foods, animals and herbal natural sources. Especially for the case of xanthophylls, the main carotenoid group of crustaceans, they can be extracted in a rapid and quantitative way with the use of UAE and MAE.
    Analytica Chimica Acta 04/2015; DOI:10.1016/j.aca.2015.03.051 · 4.52 Impact Factor

Full-text (4 Sources)

Available from
May 30, 2014