Article

Role of GILZ in immune regulation, glucocorticoid actions and rheumatoid arthritis

Center for Inflammatory Disease, Monash University Department of Medicine, Monash Medical Center, Block E Level 5, 246 Clayton Road, Clayton, VIC 3168, Australia.
Nature Reviews Rheumatology (Impact Factor: 10.25). 06/2011; 7(6):340-8. DOI: 10.1038/nrrheum.2011.59
Source: PubMed

ABSTRACT Glucocorticoids have been exploited therapeutically for more than six decades through the use of synthetic glucocorticoids as anti-inflammatory agents, and are still used in as many as 50% of patients suffering from inflammatory diseases such as rheumatoid arthritis (RA). Better understanding of the mechanisms of action of glucocorticoids could enable the development of therapies that dissociate the broad-spectrum benefits of glucocorticoids from their adverse metabolic effects. The glucocorticoid-induced leucine zipper protein (GILZ; also known as TSC22 domain family protein 3) is a glucocorticoid-responsive molecule whose interactions with signal transduction pathways, many of which are operative in RA and other inflammatory diseases, suggest that it is a key endogenous regulator of the immune response. The overlap between the observed effects of GILZ on the immune system and those of glucocorticoids strongly suggest GILZ as a critical mediator of the therapeutic effects of glucocorticoids. Observations of the immunomodulatory effects of GILZ in human RA synovial cells, and in an in vivo model of RA, support the hypothesis that GILZ is a key glucocorticoid-induced regulator of inflammation in RA. Moreover, evidence that the effect of GILZ on bone loss might be in contrast to those of glucocorticoids suggests manipulation of GILZ as a potential means of dissociating the beneficial anti-inflammatory effects of glucocorticoids from their negative metabolic repercussions.

1 Follower
 · 
125 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myocardial infarction (MI) and its resultant heart failure remains a major cause of death in the world. The current treatments for patients with MI are revascularization with thrombolytic agents or interventional procedures. These treatments have focused on restoring blood flow to the ischemic tissue to prevent tissue necrosis and preserve organ function. The restoration of blood flow after a period of ischemia, however, may elicit further myocardial damage, called reperfusion injury. Pharmacological interventions, such as antioxidant and Ca(2+) channel blockers, have shown premises in experimental settings; however, clinical studies have shown limited success. Thus, there is a need for the development of novel therapies to treat reperfusion injury. The therapeutic potential of glucocorticoid-regulated anti-inflammatory mediator annexin-A1 (ANX-A1) has recently been recognized in a range of systemic inflammatory disorders. ANX-A1 binds to and activates the family of formyl peptide receptors (G protein-coupled receptor family) to inhibit neutrophil activation, migration and infiltration. Until recently, studies on the cardioprotective actions of ANX-A1 and its peptide mimetics (Ac2-26, CGEN-855A) have largely focused on its anti-inflammatory effects as a mechanism of preserving myocardial viability following I-R injury. Our laboratory provided the first evidence of the direct protective action of ANX-A1 on myocardium, independent of inflammatory cells in vitro. We now review the potential for ANX-A1 based therapeutics to be seen as a "triple shield" therapy against myocardial I-R injury, limiting neutrophil infiltration and preserving both cardiomyocyte viability and contractile function. This novel therapy may thus represent a valuable clinical approach to improve outcome after MI. Copyright © 2014. Published by Elsevier Inc.
    Pharmacology [?] Therapeutics 11/2014; 148. DOI:10.1016/j.pharmthera.2014.11.012 · 7.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tick salivary glands produce complex cocktails of bioactive molecules that facilitate blood feeding and pathogen transmission by modulating host hemostasis, pain/itch responses, wound healing, and both innate and adaptive immunity. In this study, cutaneous responses at Dermacentor andersoni bite-sites were analyzed using Affymetrix mouse genome arrays and histopathology at 12, 48, 96 and 120 h post- infestation (hpi) during primary infestations and 120 hpi during secondary infestations. The microarray data suggests: (1) chemotaxis of neutrophils, monocytes, and other cell types; (2) production and scavenging of reactive oxygen species; and, (3) keratin- based wound healing responses. Histological analysis supported the microarray findings. At 12 hpi, a mild inflammatory infiltrate was present in the dermis, especially concentrated at the junction between dermal connective tissue and underlying adipose tissue. A small lesion was located immediately under the hypostome and likely represents the feeding "pool." Surprisingly, at 48 hpi, the number of inflammatory cells had not increased from 12 hpi, perhaps mirroring the reduction in gene expression seen at this time point. The feeding lesion is very well defined, and extravasated erythrocytes are readily evident around the hypostome. By 96 hpi, the inflammatory infiltrate has increased dramatically and the feeding lesion appears to have moved deeper into the dermis. At 120 hpi, most of the changes at 96 hpi are intensified. The infiltrate is very dense, the epidermis is markedly thickened, the feeding lesion is poorly defined and the dermal tissue near the hypostome appears to be loosing its normal architecture. In conclusion, during D. andersoni feeding infiltration of inflammatory cells increases across time concurrent with significant changes in the epidermal and dermal compartments near the feeding tick. The importance of changes in the epidermal layer in the host response to ticks is not known, however, it is possible the host attempts to "slough off" the tick by greatly increasing epithelial cell replication.
    Frontiers in Microbiology 05/2014; 5:198. DOI:10.3389/fmicb.2014.00198 · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal function of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and suicide. The purpose of this study was to test the hypothesis that the reported dysregulation of the HPA axis in suicide may be related to a disturbed feedback inhibition caused by decreased corticoid receptors in the brain. We therefore determined the protein and gene expression of glucocorticoid (GR) and mineralocorticoid receptors (MR) in the postmortem brain of teenage suicide victims and matched normal controls. Protein and mRNA expression of GR (GR-α and GR-β) and MR and the mRNA expression of glucocorticoid-induced leucine zipper (GILZ), a target gene for GR were determined by immunolabeling using Western blot technique and the real-time RT-polymerase chain reaction (qPCR) technique in the prefrontal cortex (PFC), hippocampus, subiculum, and amygdala obtained from 24 teenage suicide victims and 24 teenage control subjects. We observed that protein and gene expression of GR-α was significantly decreased in the PFC and amygdala, but not in the hippocampus or subiculum, of teenage suicide victims compared with normal control subjects. Also, the mRNA levels of GR inducible target gene GILZ was significantly decreased in PFC and amygdaloid nuclei but not in hippocampus compared with controls. In contrast, no significant differences were observed in protein or gene expression of MR in any of the areas studied between teenage suicide victims and normal control subjects. There was no difference in the expression of GR-β in the PFC between suicide victims and normal controls. These results suggested that the observed dysregulation of the HPA axis in suicide may be related to a decreased expression of GR-α and GR inducible genes in the PFC and amygdala of teenage suicide victims. The reason why GR receptors are not dysregulated in the hippocampus or subiculum, presumably two sites of stress action, are not clear at this time.
    Psychoneuroendocrinology 07/2013; 38(11). DOI:10.1016/j.psyneuen.2013.06.020 · 5.59 Impact Factor