Article

Epithelial cell extrusion requires the sphingosine-1-phosphate receptor 2 pathway

Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
The Journal of Cell Biology (Impact Factor: 9.69). 05/2011; 193(4):667-76. DOI: 10.1083/jcb.201010075
Source: PubMed

ABSTRACT To maintain an intact barrier, epithelia eliminate dying cells by extrusion. During extrusion, a cell destined for apoptosis signals its neighboring cells to form and contract a ring of actin and myosin, which squeezes the dying cell out of the epithelium. Here, we demonstrate that the signal produced by dying cells to initiate this process is sphingosine-1-phosphate (S1P). Decreasing S1P synthesis by inhibiting sphingosine kinase activity or by blocking extracellular S1P access to its receptor prevented apoptotic cell extrusion. Extracellular S1P activates extrusion by binding the S1P(2) receptor in the cells neighboring a dying cell, as S1P(2) knockdown in these cells or its loss in a zebrafish mutant disrupted cell extrusion. Because live cells can also be extruded, we predict that this S1P pathway may also be important for driving delamination of stem cells during differentiation or invasion of cancer cells.

Download full-text

Full-text

Available from: Jody Rosenblatt, Jul 05, 2015
0 Followers
 · 
106 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial cell extrusion and subsequent apoptosis is a key mechanism to prevent accumulation of excess cells. Conversely, when driven by oncogene expression, apical cell extrusion is followed by proliferation and represents an initial step of tumorigenesis. E-cadherin (E-cad), the main component of adherens junctions, has been shown to be essential for epithelial cell extrusion, but its mechanistic contribution remains unclear. Here, we provide clear evidence that cell extrusion can be driven by E-cad cleavage, both in a wild type and oncogenic environment. We first show that CDC42 activation in a single epithelial cell results in its efficient MMP-sensitive extrusion through MEK signaling activation and is supported by E-cad cleavage. Second, using an engineered cleavable form of E-cad, we demonstrate that sole extracellular E-cad truncation at the plasma membrane promotes apical extrusion. We propose that extracellular cleavage of E-cad generates a rapid change in cell-cell adhesion sufficient to drive apical cell extrusion. Whereas in normal epithelia, extrusion is followed by apoptosis, when combined to active oncogenic signaling, it is coupled to cell proliferation.
    Journal of Cell Science 06/2014; 127(15). DOI:10.1242/jcs.147926 · 5.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regeneration of complex structures after injury requires dramatic changes in cellular behavior. Regenerating tissues initiate a program that includes diverse processes such as wound healing, cell death, dedifferentiation, and stem (or progenitor) cell proliferation; furthermore, newly regenerated tissues must integrate polarity and positional identity cues with preexisting body structures. Gene knockdown approaches and transgenesis-based lineage and functional analyses have been instrumental in deciphering various aspects of regenerative processes in diverse animal models for studying regeneration.
    The Journal of Cell Biology 03/2012; 196(5):553-62. DOI:10.1083/jcb.201105099 · 9.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite high rates of cell death, epithelia maintain intact barriers by squeezing dying cells out using a process termed cell extrusion. Cells can extrude apically into the lumen or basally into the tissue the epithelium encases, depending on whether actin and myosin contract at the cell base or apex, respectively. We previously found that microtubules in cells surrounding a dying cell target p115 RhoGEF to the actin cortex to control where contraction occurs. However, what controls microtubule targeting to the cortex and whether the dying cell also controls the extrusion direction were unclear. Here we find that the tumor suppressor adenomatous polyposis coli (APC) controls microtubule targeting to the cell base to drive apical extrusion. Whereas wild-type cells preferentially extrude apically, cells lacking APC or expressing an oncogenic APC mutation extrude predominantly basally in cultured monolayers and zebrafish epidermis. Thus APC is essential for driving extrusion apically. Surprisingly, although APC controls microtubule reorientation and attachment to the actin cortex in cells surrounding the dying cell, it does so by controlling actin and microtubules within the dying cell. APC disruptions that are common in colon and breast cancer may promote basal extrusion of tumor cells, which could enable their exit and subsequent migration.
    Molecular biology of the cell 09/2011; 22(21):3962-70. DOI:10.1091/mbc.E11-05-0469 · 5.98 Impact Factor