Dual-mode of insulin action controls GLUT4 vesicle exocytosis

Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
The Journal of Cell Biology (Impact Factor: 9.69). 05/2011; 193(4):643-53. DOI: 10.1083/jcb.201008135
Source: PubMed

ABSTRACT Insulin stimulates translocation of GLUT4 storage vesicles (GSVs) to the surface of adipocytes, but precisely where insulin acts is controversial. Here we quantify the size, dynamics, and frequency of single vesicle exocytosis in 3T3-L1 adipocytes. We use a new GSV reporter, VAMP2-pHluorin, and bypass insulin signaling by disrupting the GLUT4-retention protein TUG. Remarkably, in unstimulated TUG-depleted cells, the exocytic rate is similar to that in insulin-stimulated control cells. In TUG-depleted cells, insulin triggers a transient, twofold burst of exocytosis. Surprisingly, insulin promotes fusion pore expansion, blocked by acute perturbation of phospholipase D, which reflects both properties intrinsic to the mobilized vesicles and a novel regulatory site at the fusion pore itself. Prolonged stimulation causes cargo to switch from approximately 60 nm GSVs to larger exocytic vesicles characteristic of endosomes. Our results support a model whereby insulin promotes exocytic flux primarily by releasing an intracellular brake, but also by accelerating plasma membrane fusion and switching vesicle traffic between two distinct circuits.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myoblast differentiation and fusion is a well-orchestrated multi-step process that is essential for skeletal muscle development and regeneration. Phospholipase D1 (PLD1) has been implicated in the initiation of myoblast differentiation in vitro. However, whether PLD1 plays additional roles in myoblast fusion and exerts a function in myogenesis in vivo remains unknown. Here we show that PLD1 expression is upregulated in myogenic cells during muscle regeneration following cardiotoxin injury and that genetic ablation of PLD1 results in delayed myofiber regeneration. Myoblasts derived from PLD1 null mice or treated with PLD1-specific inhibitor are unable to form mature myotubes, indicating defects in second phase myoblast fusion. Concomitantly, the PLD1 product phosphatidic acid is transiently detected on the plasma membrane of differentiating myocytes and its production is inhibited by PLD1 knockdown. Exogenous lysophosphatidylcholine, a key membrane lipid for fusion pore formation, partially rescues fusion defect resulting from PLD1 inhibition. Thus, these studies demonstrate a role for PLD1 in myoblast fusion during myogenesis, in which PLD1 facilitates the mononuclear myocytes to fuse with nascent myotubes.
    Molecular Biology of the Cell 11/2014; 26(3). DOI:10.1091/mbc.E14-03-0802 · 4.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fluorescent proteins with pH-sensitive fluorescence are valuable tools for the imaging of exocytosis and endocytosis. The Aequorea green fluorescent protein mutant superecliptic pHluorin (SEP) is particularly well suited to these applications. Here we describe pHuji, a red fluorescent protein with a pH sensitivity that approaches that of SEP, making it amenable for detection of single exocytosis and endocytosis events. To demonstrate the utility of the pHuji plus SEP pair, we perform simultaneous two-color imaging of clathrin-mediated internalization of both the transferrin receptor and the β2 adrenergic receptor. These experiments reveal that the two receptors are differentially sorted at the time of endocytic vesicle formation.
    The Journal of Cell Biology 11/2014; 207(3-3):419-432. DOI:10.1083/jcb.201404107 · 9.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insulin causes the exocytic translocation of GLUT4 glucose transporters to stimulate glucose uptake in fat and muscle. Previous results support a model in which TUG traps GLUT4 in intracellular, insulin-responsive vesicles termed GLUT4 storage vesicles (GSVs). Insulin triggers TUG cleavage to release the GSVs; GLUT4 then recycles through endosomes during ongoing insulin exposure. The TUG C-terminus binds a GSV anchoring site comprising Golgin-160 and possibly other proteins. Here, we report that the TUG C-terminus is acetylated. The TUG C-terminal peptide bound the Golgin-160-associated protein, ACBD3 (acyl-CoA binding domain containing 3), and acetylation reduced binding of TUG to ACBD3, but not to Golgin-160. Mutation of the acetylated residues impaired insulin-responsive GLUT4 trafficking in 3T3-L1 adipocytes. ACBD3 overexpression enhanced the translocation of GSV cargos, GLUT4 and IRAP, and ACBD3 was required for intracellular retention of these cargos in unstimulated cells. SIRT2, a NAD+-dependent deacetylase, bound TUG and deacetylated the TUG peptide. SIRT2 overexpression reduced TUG acetylation and redistributed GLUT4 and IRAP to the plasma membrane in 3T3-L1 adipocytes. Mutation of the acetylated residues in TUG abrogated these effects. In mice, SIRT2 deletion increased TUG acetylation and proteolytic processing. During glucose tolerance tests, glucose disposal was enhanced in SIRT2 knockout mice, compared to wildtype controls, without any effect on insulin concentrations. Together, these data support a model in which TUG acetylation modulates its interaction with Golgi matrix proteins and is regulated by SIRT2. Moreover, acetylation of TUG enhances its function to trap GSVs within unstimulated cells, and enhances insulin-stimulated glucose uptake. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    Journal of Biological Chemistry 01/2015; 290(7). DOI:10.1074/jbc.M114.603977 · 4.60 Impact Factor