Article

Structure of C3PO and mechanism of human RISC activation.

Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Nature Structural & Molecular Biology (Impact Factor: 11.63). 06/2011; 18(6):650-7. DOI: 10.1038/nsmb.2032
Source: PubMed

ABSTRACT Assembly of the RNA-induced silencing complex (RISC) consists of loading duplex (guide-passenger) siRNA onto Argonaute (Ago2) and removing the passenger strand. Ago2 contributes critically to RISC activation by nicking the passenger strand. Here we reconstituted duplex siRNA-initiated RISC activity using recombinant human Ago2 (hAgo2) and C3PO, indicating that C3PO has a critical role in hAgo2-RISC activation. Consistently, genetic depletion of C3PO compromised RNA silencing in mammalian cells. We determined the crystal structure of hC3PO, which reveals an asymmetric octamer barrel consisting of six translin and two TRAX subunits. This asymmetric assembly is critical for the function of C3PO as an endonuclease that cleaves RNA at the interior surface. The current work supports a Dicer-independent mechanism for human RISC activation, in which Ago2 directly binds duplex siRNA and nicks the passenger strand, and then C3PO activates RISC by degrading the Ago2-nicked passenger strand.

1 Follower
 · 
185 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetic defects in the microRNA (miRNA) generating enzyme, dicer, are increasingly linked to disease. Loss of miRNA in dicer deficiency is thought to be due to loss of miRNA-generating activity. Here, we demonstrate a catabolic mechanism driving miRNA depletion in dicer deficiency. We developed a Dicer-antagonist assay revealing a pre-miRNA degrading enzyme that competes with pre-miRNA processing. We purified this pre-miRNA degrading activity using an unbiased chromatographic procedure and identified the ribonuclease complex Translin/Trax (TN/TX). In wild-type dicer backgrounds, pre-miRNA processing was dominant. However, in dicer-deficient contexts, TN/TX broadly suppressed miRNA. These findings indicate that miRNA depletion in dicer deficiency is due to the combined loss of miRNA-generating activity and catabolic function of TN/TX. Importantly, inhibition of TN/TX mitigated loss of both miRNA and tumor suppression with dicer haploinsufficiency. These studies reveal a potentially druggable target for restoring miRNA function in cancers and emerging dicer deficiencies. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The single-stranded DNA/RNA binding protein translin was suggested to be involved in chromosomal translocations, telomere metabolism, and mRNA transport and translation. Oligonucleotide binding surfaces map within a closed cavity of translin octameric barrels, raising the question as to how DNA/RNA gain access to this inner cavity, particularly given that none of the barrel structures reported to date hint to an entryway. Here we argue against a mechanism by which translin octamers may “dissociate and reassemble” upon RNA binding and report a novel “open” barrel structure of human translin revealing a feasible DNA/RNA entryway into the cavity. Additionally, we report that translin is not confined to binding of ssDNA oligonucleotides, or single-stranded extensions of dsDNA, but can also bind single-stranded sequences internally embedded in dsDNA molecules.
    Journal of Molecular Biology 11/2014; 427(4). DOI:10.1016/j.jmb.2014.11.013 · 3.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ATP-binding cassette sub-family E member 1 (ABCE1) is a highly conserved protein among eukaryotes and archaea. Recent studies have identified ABCE1 as a ribosome-recycling factor important for translation termination in mammalian cells, yeast and also archaea. Here we report another conserved function of ABCE1. We have previously described AtRLI2, the homolog of ABCE1 in the plant Arabidopsis thaliana, as an endogenous suppressor of RNA silencing. In this study we show that this function is conserved: human ABCE1 is able to suppress RNA silencing in Nicotiana benthamiana plants, in mammalian HEK293 cells and in the worm Caenorhabditis elegans. Using co-immunoprecipitation and mass spectrometry, we found a number of potential ABCE1-interacting proteins that might support its function as an endogenous suppressor of RNA interference. The interactor candidates are associated with epigenetic regulation, transcription, RNA processing and mRNA surveillance. In addition, one of the identified proteins is translin, which together with its binding partner TRAX supports RNA interference.
    PLoS ONE 02/2015; 10(2):e0116702. DOI:10.1371/journal.pone.0116702 · 3.53 Impact Factor