Clinical Applications of Basic Research that Shows Reducing Skin Tension Could Prevent and Treat Abnormal Scarring: The Importance of Fascial/Subcutaneous Tensile Reduction Sutures and Flap Surgery for Keloid and Hypertrophic Scar Reconstruction

Department of Plastic, Reconstructive and Regenerative Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
Journal of Nippon Medical School (Impact Factor: 0.58). 01/2011; 78(2):68-76. DOI: 10.1272/jnms.78.68
Source: PubMed


We use evidence-based algorithms to treat abnormal scarring, including keloids and hypertrophic scars (HSs). This involves a multimodal approach that employs traditional methods such as surgical removal, postoperative radiotherapy, corticosteroid injection, laser, and silicone gel sheets. As a result, the rate of abnormal scarring recurrence has decreased dramatically over the past 10 years. However, several problems remain to be solved. First, despite the optimization of a radiotherapy protocol, over 10% of cases who are treated with surgery and postoperative radiotherapy still recur in our facility. Second, the treatment options for cases with huge keloids are very limited. To address these problems, we performed basic research on the mechanisms that drive the formation of keloids and HSs. Extrapolation of these research observations to the clinic has led to the development of two treatment strategies that have reduced the rate of abnormal scar recurrence further and provided a means to remove large scars. Our finite element analysis of the mechanical force distribution around keloids revealed high skin tension at the keloid edges and lower tension in the keloid center. Moreover, when a sophisticated servo-controlled device was used to stretch wounded murine dorsal skin, it was observed that the stretched samples exhibited upregulated epidermal proliferation and angiogenesis, which are also observed in keloids and HSs. Real-time RT-PCR also revealed that growth factors and neuropeptides are more strongly expressed in cyclically stretched skin than in statically stretched skin. These findings support the well-established notion that mechanical forces on the skin strongly influence the cellular behavior that leads to scarring. These observations led us to focus on the importance of reducing skin tension when keloids/HSs are surgically removed to prevent their recurrence. Clinical trials revealed that subcutaneous/fascial tensile reduction sutures, which apply minimal tension on the dermis, are more effective in reducing recurrence than the three-layered sutures used by plastic surgeons. Moreover, we have found that by using skin flaps (e.g., perforator flaps and propeller flaps), which release tension on the wound, in combination with postoperative radiotherapy, huge keloids can be successfully treated.

64 Reads
  • Source
    • "Myofibroblasts contract and compact the neo-formed ECM, contributing to bring wound edges together in physiological conditions. But sometimes, the presence at the wound site of local mechanical forces, i.e tension forces, can contribute to an abnormal wound healing process and to the development of excessive scars such as keloids (Ogawa et al., 2011). The effects of mechanical forces on cells have already been investigated in various types of cells, such as endothelial and smooth muscle cells or chondrocytes that are constantly subjected to fluid shear stress or pressure forces (Wilson et al., 2014; Chiquet, 1999). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Skin wound healing is finely regulated by both matrix synthesis and degradation which are governed by dermal fibroblast activity. Actually, fibroblasts synthesize numerous extracellular matrix proteins (i.e., collagens), remodeling enzymes and their inhibitors. Moreover, they differentiate into myofibroblasts and are able to develop endogenous forces at the wound site. Such forces are crucial during skin wound healing and have been widely investigated. However, few studies have focused on the effect of exogenous mechanical tension on the dermal fibroblast phenotype, which is the objective of the present paper. To this end, an exogenous, defined, cyclic and uniaxial mechanical strain was applied to fibroblasts cultured as scratch-wounded monolayers. Results showed that fibroblasts׳ response was characterized by both an increase in procollagen type-I and TIMP-1 synthesis, and a decrease in MMP-1 synthesis. The monitoring of scratch-wounded monolayers did not show any decrease in kinetics of the filling up when mechanical tension was applied. Additional results obtained with proliferating fibroblasts and confluent monolayer indicated that mechanical tension-induced response of fibroblasts depends on their culture conditions. In conclusion, mechanical tension leads to the differentiation of dermal fibroblasts and may increase their wound-healing capacities. So, the exogenous uniaxial and cyclic mechanical tension reported in the present study may be considered in order to improve skin wound healing.
    Journal of Biomechanics 09/2014; 47(14):3555–3561. DOI:10.1016/j.jbiomech.2014.07.015 · 2.75 Impact Factor
  • Source
    • "Figure 1 shows this phenomenon prior to breast augmentation (Figure 1A,B) and early in the post-operative course (Figure 1C,D). Others [9,10] have previously noted that increased stress or tension on soft tissue, as with a poorly supported breast implant, may contribute to a higher risk for fibrotic scar tissue formation, similar to what is seen with capsular contracture. In this way, poor quality soft-tissue support potentially plays a contributory role, in conjunction with other factors known to increase capsular contracture risk, such as subglandular implant position, smooth surfaced implants, and bacterial colonization of the peri-prosthetic space and/or implant surface [11-13]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients who present for augmentation mammoplasty with poor quality mammary soft-tissue support may be at increased risk for post-operative complications. Non-crosslinked intact porcine-derived acellular dermal matrix (StratticeTM Reconstructive Tissue Matrix, LifeCell Corp., Branchburg, NJ, USA) may enhance soft-tissue support in such patients and reduce implant-related complications, including capsular contracture, rippling, palpability, and malposition. The objective of this case report series was to describe the outcomes of three patients with poor quality mammary soft-tissue support who underwent primary cosmetic breast augmentation with pre-emptive implantation of porcine-derived acellular dermal matrix. Case 1 concerns a 40-year-old Caucasian woman with post-partum soft tissue laxity and grade II ptosis. Case 2 concerns a 30-year-old Caucasian woman with congenital soft-tissue laxity and grade I + ptosis. Case 3 concerns a 49-year-old Caucasian woman with post-partum and post-weight-loss-induced laxity and grade III ptosis. In all three of our patients, porcine-derived acellular dermal matrix was sutured to the chest wall along the infra-mammary and/or a neo-infra-mammary fold and then laid passively superiorly or sutured under tension to the breast parenchyma or caudal edge of the pectoralis major muscle. In cases 1 and 2, a modified internal mastopexy technique was performed. Suturing the porcine-derived acellular dermal matrix to the posterior aspect of the breast parenchyma and/or caudal pectoralis muscle under appropriate tension in conjunction with radial plication of the porcine-derived acellular dermal matrix created a snug 'hand-in-glove' pocket and resulted in only minimal peri-areolar scarring. Case 3 required a vertical scar mastopexy. During a mean of 18 months of follow-up, all three patients had positive outcomes and no complications (that is, infection, hematoma, seroma, rippling, malposition, or capsular contracture). The surgeon and patients were generally highly satisfied with the aesthetic outcome of the breasts. Pre-emptive use of porcine-derived acellular dermal matrix may be beneficial in patients with primary augmentation with poor quality mammary soft-tissue support.
    Journal of Medical Case Reports 12/2013; 7(1):275. DOI:10.1186/1752-1947-7-275
  • Source
    • "These include methods that are directly based on the mechanics theory. These tension-reduction or shielding methods aim to prevent the development of scars and include the use of z-plasties, w-plasties, and small-wave incision design,56 local flaps to cover the wound, subcutaneous/fascial sutures,57 and silicon sheeting.58 Similarly, another approach, the application of snake oil in traditional African medicine, is a nutrition-based therapy that seems to have some efficacy.59 "
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of cutaneous pathological scars, namely, hypertrophic scars (HSs) and keloids, involves complex pathways, and the exact mechanisms by which they are initiated, evolved, and regulated remain to be fully elucidated. The generally held concepts that keloids and HSs represent "aberrant wound healing" or that they are "characterized by hyalinized collagen bundles" have done little to promote their accurate clinicopathological classification or to stimulate research into the specific causes of these scars and effective preventative therapies. To overcome this barrier, we review here the most recent findings regarding the pathology and pathogenesis of keloids and HSs. The aberrations of HSs and keloids in terms of the inflammation, proliferation, and remodeling phases of the wound healing process are described. In particular, the significant roles that the extracellular matrix and the epidermal and dermal layers of skin play in scar pathogenesis are examined. Finally, the current hypotheses of pathological scar etiology that should be tested by basic and clinical investigators are detailed. Therapies that have been found to be effective are described, including several that evolved directly from the aforementioned etiology hypotheses. A better understanding of pathological scar etiology and manifestations will improve the clinical and histopathological classification and treatment of these important lesions.
    07/2013; 1(4):e25. DOI:10.1097/GOX.0b013e31829c4597
Show more