PKB signaling and atrogene expression in skeletal muscle of aged mice

Department of Health and Exercise Sciences, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866, USA.
Journal of Applied Physiology (Impact Factor: 3.43). 05/2011; 111(1):192-9. DOI: 10.1152/japplphysiol.00175.2011
Source: PubMed

ABSTRACT The purpose of this study was to determine if PKB signaling is decreased and contractile protein degradation is increased in extensor digitorum longus (EDL) and soleus (SOL) muscles from middle-aged (MA) and aged (AG) mice. We also examined the effect of age on atrogene expression in quadriceps muscle. PKB activity, as assessed by Thr(308) and Ser(473) phosphorylation, was significantly higher in EDL and SOL muscles from AG than MA mice. The age-related increase in PKB activity appears to be due to an increase in expression of the kinase, as PKB-α and PKB-β levels were significantly higher in EDL and SOL muscles from AG than MA mice. The phosphorylation of forkhead box 3a (FOXO3a) on Thr(32), a PKB target, was significantly higher in EDL muscles from AG than MA mice. The rate of contractile protein degradation was similar in EDL and SOL muscles from AG and MA mice. Atrogin-1 and muscle-specific RING finger protein 1 (MuRF-1) mRNA levels did not change in muscles from AG compared with MA mice, indicating that ubiquitin-proteasome proteolysis does not contribute to sarcopenia. A significant decrease in Bcl-2 and 19-kDa interacting protein 3 (Bnip3) and GABA receptor-associated protein 1 (Gabarap1) mRNA was observed in muscles from AG compared with MA mice, which may contribute to age-related contractile dysfunction. In conclusion, the mechanisms responsible for sarcopenia are distinct from experimental models of atrophy and do not involve atrogin-1 and MuRF-1 or enhanced proteolysis. Finally, a decline in autophagy-related gene expression may provide a novel mechanism for impaired contractile function and muscle metabolism with advancing age.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Sarcopenia is the age-related loss of skeletal muscle mass and strength, attributable in part to muscle fibre loss. We are currently unable to prevent fibre loss because we do not know what causes it. To provide a platform from which to better understand the causes of muscle fibre death we have quantified fibre loss in several muscles of aged C57Bl/6J mice. Comparison of muscle fibre numbers on dystrophin-immunostained transverse tissue sections at 6 months of age with those at 24 months shows a significant fibre loss in extensor digitorum longus and soleus, but not in sternomastoid or cleidomastoid muscles. The muscles of the elderly mice were mostly lighter than their younger counterparts, but fibres in the elderly muscles were of about the same cross-sectional area. This study shows that the contribution of fibre death to sarcopenia is highly variable and that there is no consistent pattern of age-related fibre loss between skeletal muscles.
    Biogerontology 11/2011; 13(2):157-67. DOI:10.1007/s10522-011-9365-0 · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sarcopenia refers to age-related loss of muscle mass and function. Several age-related changes occur in skeletal muscle including a decrease in myofiber size and number and a diminished ability of satellite cells to activate and proliferate upon injury leading to impaired muscle remodeling. Although the molecular mechanisms underlying sarcopenia are unknown, it is tempting to hypothesize that interplay between biological and environmental factors cooperate in a positive feedback cycle contributing to the progression of sarcopenia. Indeed many essential biological mechanisms such as apoptosis and autophagy and critical signaling pathways involved in skeletal muscle homeostasis are altered during aging and have been linked to loss of muscle mass. Moreover, the environmental effects of the sedentary lifestyle of older people further promote and contribute the loss of muscle mass. There are currently no widely accepted therapeutic strategies to halt or reverse the progression of sarcopenia. Caloric restriction has been shown to be beneficial as a sarcopenia and aging antagonist. Such results have made the search for caloric restriction mimetics (CRM) a priority. However given the mechanisms of action, some of the currently investigated CRMs may not combat sarcopenia. Thus, sarcopenia may represent a unique phenotypic feature of aging that requires specific and individually tailored therapeutic strategies.
    Aging 12/2011; 3(12):1142-53. · 4.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in our understanding of the biology of muscle, and how anabolic and catabolic stimuli interact to control muscle mass and function, have led to new interest in the pharmacological treatment of muscle wasting. Loss of muscle occurs as a consequence of several chronic diseases (cachexia) as well as normal aging (sarcopenia). Although many negative regulators [Atrogin-1, muscle ring finger-1, nuclear factor-kappaB (NF-κB), myostatin, etc.] have been proposed to enhance protein degradation during both sarcopenia and cachexia, the adaptation of mediators markedly differs among these conditions. Sarcopenic and cachectic muscles have been demonstrated to be abundant in myostatin- and apoptosis-linked molecules. The ubiquitin-proteasome system (UPS) is activated during many different types of cachexia (cancer cachexia, cardiac heart failure, chronic obstructive pulmonary disease), but not many mediators of the UPS change during sarcopenia. NF-κB signaling is activated in cachectic, but not in sarcopenic, muscle. Some studies have indicated a change of autophagic signaling during both sarcopenia and cachexia, but the adaptation remains to be elucidated. This review provides an overview of the adaptive changes in negative regulators of muscle mass in both sarcopenia and cachexia.
    01/2012; 3(2):77-94. DOI:10.1007/s13539-011-0052-4
Show more