Article

Altered vitamin E status in Niemann-Pick type C disease.

Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
The Journal of Lipid Research (Impact Factor: 4.73). 07/2011; 52(7):1400-10. DOI: 10.1194/jlr.M015560
Source: PubMed

ABSTRACT Vitamin E (α-tocopherol) is the major lipid-soluble antioxidant in many species. Niemann-Pick type C (NPC) disease is a lysosomal storage disorder caused by mutations in the NPC1 or NPC2 gene, which regulates lipid transport through the endocytic pathway. NPC disease is characterized by massive intracellular accumulation of unesterified cholesterol and other lipids in lysosomal vesicles. We examined the roles that NPC1/2 proteins play in the intracellular trafficking of tocopherol. Reduction of NPC1 or NPC2 expression or function in cultured cells caused a marked lysosomal accumulation of vitamin E in cultured cells. In vivo, tocopherol significantly accumulated in murine Npc1-null and Npc2-null livers, Npc2-null cerebella, and Npc1-null cerebral cortices. Plasma tocopherol levels were within the normal range in Npc1-null and Npc2-null mice, and in plasma samples from human NPC patients. The binding affinity of tocopherol to the purified sterol-binding domain of NPC1 and to purified NPC2 was significantly weaker than that of cholesterol (measurements kindly performed by R. Infante, University of Texas Southwestern Medical Center, Dallas, TX). Taken together, our observations indicate that functionality of NPC1/2 proteins is necessary for proper bioavailability of vitamin E and that the NPC pathology might involve tissue-specific perturbations of vitamin E status.

Download full-text

Full-text

Available from: Jeffrey Atkinson, Jul 06, 2015
0 Followers
 · 
155 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Niemann-Pick C disease (NPC) is a neuro-visceral lysosomal storage disorder mainly caused by genetic defects in the NPC1 gene. As a result of loss of NPC1 function large quantities of free cholesterol and other lipids accumulate within late endosomes and lysosomes. In NPC livers and brains, the buildup of lipids correlates with oxidative damage; however the molecular mechanisms that trigger it remain unknown. Here we study potential alterations in vitamin E (α-tocopherol, α-TOH), the most potent endogenous antioxidant, in liver tissue and neurons from NPC1 mice. We found increased levels of α-TOH in NPC cells. We observed accumulation and entrapment of α-TOH in NPC neurons, mainly in the late endocytic pathway. Accordingly, α-TOH levels were increased in cerebellum of NPC1 mice. Also, we found decreased mRNA levels of the α-TOH transporter, α-Tocopherol Transfer Protein (α-TTP), in the cerebellum of NPC1 mice. Finally, by subcellular fractionation studies we detected a significant increase in the hepatic α-TOH content in purified lysosomes from NPC1 mice. In conclusion, these results suggest that NPC cells cannot transport vitamin E correctly leading to α-TOH buildup in the endosomal/lysosomal system. This may result in a decreased bioavailability and impaired antioxidant function of vitamin E in NPC, contributing to the disease pathogenesis.
    Biochimica et Biophysica Acta 11/2011; 1822(2):150-60. DOI:10.1016/j.bbadis.2011.11.009 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Niemann-Pick type C disease (NPC) is a neurovisceral lipid storage disorder mainly characterized by unesterified cholesterol accumulation in lysosomal/late endosomal compartments, although there is also an important storage for several other kind of lipids. The main tissues affected by the disease are the liver and the cerebellum. Oxidative stress has been described in various NPC cells and tissues, such as liver and cerebellum. Although considerable alterations occur in the liver, the pathological mechanisms involved in hepatocyte damage and death have not been clearly defined. Here, we assessed hepatic tissue integrity, biochemical and oxidative stress parameters of wild-type control (Npc1(+/+); WT) and homozygous-mutant (Npc1(-/-); NPC) mice. In addition, the mRNA abundance of genes encoding proteins associated with oxidative stress, copper metabolism, fibrosis, inflammation and cholesterol metabolism were analyzed in livers and cerebella of WT and NPC mice. We analyzed various oxidative stress parameters in the liver and hepatic and cerebellum gene expression in 7-week-old NPC1-deficient mice compared with control animals. We found signs of inflammation and fibrosis in NPC livers upon histological examination. These signs were correlated with increased levels of carbonylated proteins, diminished total glutathione content and significantly increased total copper levels in liver tissue. Finally, we analyzed liver and cerebellum gene expression patterns by qPCR and microarray assays. We found a correlation between fibrotic tissue and differential expression of hepatic as well as cerebellar genes associated with oxidative stress, fibrosis and inflammation in NPC mice. In NPC mice, liver disease is characterized by an increase in fibrosis and in markers associated with oxidative stress. NPC is also correlated with altered gene expression, mainly of genes involved in oxidative stress and fibrosis. These findings correlate with similar parameters in cerebellum, as has been previously reported in the NPC mice model.
    PLoS ONE 12/2011; 6(12):e28777. DOI:10.1371/journal.pone.0028777 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Niemann-Pick type C (NPC) disease is a neurovisceral atypical lipid storage disorder involving the accumulation of cholesterol and other lipids in the late endocytic pathway. The pathogenic mechanism that links the accumulation of intracellular cholesterol with cell death in NPC disease in both the CNS and the liver is currently unknown. Oxidative stress has been observed in the livers and brains of NPC mice and in different NPC cellular models. Moreover, there is evidence of an elevation of oxidative stress markers in the serum of NPC patients. Recent evidence strongly suggests that mitochondrial dysfunction plays an important role in NPC pathogenesis and that mitochondria could be a significant source of oxidative stress in this disease. In this context, the accumulation of vitamin E in the late endosomal/lysosomal compartments in NPC could lead to a potential decrease of its bioavailability and could be another possible cause of oxidative damage. Another possible source of reactive species in NPC is the diminished activity of different antioxidant enzymes. Moreover, because NPC is mainly caused by the accumulation of free cholesterol, oxidized cholesterol derivatives produced by oxidative stress may contribute to the pathogenesis of the disease.
    Oxidative Medicine and Cellular Longevity 06/2012; 2012:205713. DOI:10.1155/2012/205713 · 3.36 Impact Factor