Next-Generation Sequencing Identifies Mutations of SMPX, which Encodes the Small Muscle Protein, X-Linked, as a Cause of Progressive Hearing Impairment

Department of Otorhinolaryngology, Head and Neck Surgery, Nijmegen, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
The American Journal of Human Genetics (Impact Factor: 10.99). 05/2011; 88(5):628-34. DOI: 10.1016/j.ajhg.2011.04.012
Source: PubMed

ABSTRACT In a Dutch family with an X-linked postlingual progressive hearing impairment, a critical linkage interval was determined to span a region of 12.9 Mb flanked by the markers DXS7108 and DXS7110. This interval overlaps with the previously described DFNX4 locus and contains 75 annotated genes. Subsequent next-generation sequencing (NGS) detected one variant within the linkage interval, a nonsense mutation in SMPX. SMPX encodes the small muscle protein, X-linked (SMPX). Further screening was performed on 26 index patients from small families for which X-linked inheritance of nonsyndromic hearing impairment (NSHI) was not excluded. We detected a frameshift mutation in SMPX in one of the patients. Segregation analysis of both mutations in the families in whom they were found revealed that the mutations cosegregated with hearing impairment. Although we show that SMPX is expressed in many different organs, including the human inner ear, no obvious symptoms other than hearing impairment were observed in the patients. SMPX had previously been demonstrated to be specifically expressed in striated muscle and, therefore, seemed an unlikely candidate gene for hearing impairment. We hypothesize that SMPX functions in inner ear development and/or maintenance in the IGF-1 pathway, the integrin pathway through Rac1, or both.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Next-generation sequencing (NGS) technologies have played a central role in the genetic revolution. These technologies, especially whole-exome sequencing, have become the primary tool of geneticists to identify the causative DNA variants in Mendelian disorders, including hereditary deafness. Current research estimates that 1% of all human genes have a function in hearing. To date, mutations in over 80 genes have been reported to cause nonsyndromic hearing loss (NSHL). Strikingly, more than a quarter of all known genes related to NSHL were discovered in the past 5 years via NGS technologies. In this article, we review recent developments in the usage of NGS for hereditary deafness, with an emphasis on whole-exome sequencing.
    Genetics Research 01/2015; 97:e4. DOI:10.1017/S001667231500004X · 2.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The immunoglobulin (Ig)-like domain containing receptor 1 (ILDR1) gene encodes angulin-2/ILDR1, a recently discovered tight junction protein, which forms tricellular tight junction (tTJ) structures with tricellulin and lipolysis-stimulated lipoprotein receptor (LSR) at tricellular contacts (TCs) in the inner ear. Previously reported recessive mutations within ILDR1 have been shown to cause severe to profound nonsyndromic sensorineural hearing loss (SNHL), DFNB42. Whole-exome sequencing of a Korean multiplex family segregating partial deafness identified a novel homozygous ILDR1 variant (p.P69H) within the Ig-like domain. To address the pathogenicity of p.P69H, the angulin-2/ILDR1 p.P69H variant protein, along with the previously reported pathogenic ILDR1 mutations, was expressed in angulin-1/LSR knockdown epithelial cells. Interestingly, partial mislocalization of the p.P69H variant protein and tricellulin at TCs was observed, in contrast to a severe mislocalization and complete failure of tricellulin recruitment of the other reported ILDR1 mutations. Additionally, three-dimensional protein modeling revealed that angulin-2/ILDR1 contributed to tTJ by forming a homo-trimer structure through its Ig-like domain, and the p.P69H variant was predicted to disturb homo-trimer formation. In this study, we propose a possible role of angulin-2/ILDR1 in tTJ formation in the inner ear and a wider audiologic phenotypic spectrum of DFNB42 caused by mutations within ILDR1.
    PLoS ONE 02/2015; 10(2):e0116931. DOI:10.1371/journal.pone.0116931 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hearing loss (HL) is the most common sensory disorder, affecting all age groups, ethnicities, and genders. According to World Health Organization (WHO) estimates in 2005, 278 million people worldwide have moderate to profound HL in both ears. Results of the 2002 National Health Interview Survey indicate that nearly 31 million of all non-institutionalized adults (aged 18 and over) in the United States have trouble hearing. Epidemiological studies have estimated that approximately 50% of profound HL can be attributed to genetic causes. With over 60 genes implicated in nonsyndromic hearing loss, it is also an extremely heterogeneous trait. Recent progress in identifying genes responsible for hearing loss enables otolaryngologists and other clinicians to apply molecular diagnosis by genetic testing. The advent of the $1000 genome has the potential to revolutionize the identification of genes and their mutations underlying genetic disorders. This is especially true for extremely heterogeneous Mendelian conditions such as deafness, where the mutation, and indeed the gene, may be private. The recent technological advances in target-enrichment methods and next generation sequencing offer a unique opportunity to break through the barriers of limitations imposed by gene arrays. These approaches now allow for the complete analysis of all known deafness-causing genes and will result in a new wave of discoveries of the remaining genes for Mendelian disorders. This review focuses on describing genotype-phenotype correlations of the most frequent genes including GJB2, which is responsible for more than half of cases, followed by other common genes and on discussing the impact of genomic advances for comprehensive genetic testing and gene discovery in hereditary hearing loss.

Full-text (2 Sources)

Available from
May 20, 2014