Article

Levels of arsenic, cadmium, lead, manganese and zinc in biological samples of paralysed steel mill workers with related to controls.

National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan.
Biological trace element research (Impact Factor: 1.92). 05/2011; 144(1-3):164-82. DOI: 10.1007/s12011-011-9063-4
Source: PubMed

ABSTRACT The determination of essential trace and toxic elements in the biological samples of human beings is an important clinical screening procedure. This study aimed to assess the possible effects of environmental exposure on paralysed male workers (n = 75) belonging to the production and quality control departments of a steel mill. In this investigation, the concentrations of arsenic, cadmium, lead, manganese and zinc were determined in biological samples (blood, urine and scalp hair samples) of exposed paralysis and non-paralysed steel mill workers. For comparative purposes, unexposed healthy subjects of same age group were selected as referents. The elements in the biological samples were measured by atomic absorption spectrophotometry prior to microwave-assisted acid digestion. The validity of the methodology was checked by the biological certified reference materials. The results indicate that the level understudy elements in all three biological samples were significantly higher in paralysed workers of both groups (quality control and production) as compared to referents (p < 0.01). The possible connection of these elements with the aetiology of disease is discussed. The results also show the need for immediate improvements of workplace ventilation and industrial hygiene practices.

1 Bookmark
 · 
111 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercaptopropane-1-sulfonic acid (DMPS) are chelating agents which have been used clinically to treat patients suffering from Pb(2+) or Hg(2+) exposure. Cd(2+) is a related environmental pollutant that is of increasing public health concern due to a demonstrated dose-response between urinary Cd level and an increased risk of diabetes. However, therapeutically effective chelating agents which enhance the excretion of Cd(2+) from humans have yet to be identified. Here we present a structural characterization of complexes of DMSA and DMPS with Cd(2+) at physiological pH using a combination of X-ray absorption spectroscopy, size exclusion chromatography and density functional theory. The results indicate a complex chemistry in which multi-metallic forms are important, but are consistent with both DMPS and DMSA acting as true chelators, using two thiolates for DMPS and one thiolate and one carboxylate for DMSA.
    Journal of inorganic biochemistry 12/2013; · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the study was the preparation of a liposome complex with encapsulated lead ions, which were electrochemically detected. In particular, experiments were focused on the potential of using an electrochemical method for the determination of free and liposome-encapsulated lead and determination of the encapsulation efficiency preventing the lead toxicity. Primarily, encapsulation of lead ions in liposomes and confirmation of successful encapsulation by electrochemical methods was done. Further, the reduction effect of the liposome matrix on the detected electrochemical signal was monitored. Besides encapsulation itself, comparison of toxicity of free lead ions and lead ions encapsulated in liposome was tested. The calculated IC50 values for evaluating the lead cytotoxicity showed significant differences between the lead enclosed in liposomes (28 µM) and free lead ions (237 µM). From the cytotoxicity studies on the bacterial strain of S. aureus it was observed that the free lead ions are less toxic in comparison with lead encapsulated in liposomes. Liposomes appear to be a suitable carrier of various substances through the inner cavity. Due to the liposome structure the lead enclosed in the liposome is more easily accepted into the cell structure and the toxicity of the enclosed lead is higher in comparison to free lead ions.
    International Journal of Environmental Research and Public Health 12/2013; 10(12):6687-6700. · 2.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the toxic metal Cd is an established human nephrotoxin, little is known about the role that interactions with plasma constitutents play in determining its mammalian target organs. To gain insight, a Cd-human serum albumin (HSA) complex was analyzed on a system consisting of size exclusion chromatography (SEC) coupled on-line to a flame atomic absorption spectrometer (FAAS). Using phosphate buffered saline (pH 7.4) as the mobile phase, we investigated the effect of 1-10mM oxidized glutathione (GSSG), l-cysteine (Cys), l-glutathione (GSH), or N-acetyl-l-cysteine (NAC) on the elution of Cd. As expected, GSSG did not mobilize Cd from the Cd-HSA complex up to a concentration of 4mM. With 1.0mM NAC, ∼30% of the injected Cd-HSA complex eluted as such, while the mobilized Cd was lost on the column. With 1.0mM of Cys or GSH, no parent Cd-HSA complex was detected and 88% and 82% of the protein bound Cd eluted close to the elution volume, likely in form of Cd(Cys)2 and a Cd-GSH 1:1 complex. Interestingly, with GSH and NAC concentrations >4.0mM, a Cd double peak was detected, which was rationalized in terms of the elution of a polynuclear Cd complex baseline-separated from a mononuclear Cd complex. In contrast, mobile phases which contained Cys concentrations ≥2mM resulted in the detection of only a single Cd peak, probably Cd(Cys)4. Our results establish SEC-FAAS as a viable tool to probe the mobilization of Cd from binding sites on plasma proteins at near physiological conditions. The detected complexes between Cd and Cys or GSH may be involved in the translocation of Cd to mammalian target organs.
    Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 03/2014; 958C:16-21. · 2.78 Impact Factor