Global expression profiling reveals gain-of-function oncogenic activity of a mutated thyroid hormone receptor in thyroid carcinogenesis.

Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
American Journal of Cancer Research (Impact Factor: 3.97). 01/2011; 1(2):168-191.
Source: PubMed

ABSTRACT Thyroid hormone receptors (TRs) are critical in regulating gene expression in normal physiological processes. Decreased expression and/or somatic mutations of TRs have been shown to be associated several types of human cancers including liver, breast, lung, and thyroid. To understand the molecular mechanisms by which mutated TRs promote carcinogenesis, an animal model of follicular thyroid carcinoma (FTC) (Thrb(PV/PV) mice) was used in the present study. The Thrb(PV/PV) mouse harbors a knockin dominant negative PV mutation, identified in a patient with resistance to thyroid hormone. To understand whether oncogenic actions of PV involve not only the loss of normal TR functions but also gain-of-function activities, we compared the gene expression profiles of thyroid lesions in Thrb(PV/PV) mice and Thra1(-/-)Thrb(-/-) mice that also spontaneously develop FTC, but with less severe malignancy. Analysis of the cDNA microarray data derived from microdissected thyroid tumor cells of these two mice showed contrasting global gene expression profiles. With stringent selection using 2.5-fold change (p<0.01) in cDNA microarray analysis, 241 genes with altered gene expression were identified. Nearly half of the genes (n=103: 42.7% of total) with altered gene expression in thyroid tumor cells of Thrb(PV/PV) mice were associated with tumorigenesis and metastasis; some of these genes function as oncogenes in human thyroid cancers. The remaining genes were found to function in transcriptional regulation, RNA processing, cell proliferation, apoptosis, angiogenesis, and cytoskeleton modification. These results indicate that the more aggressive thyroid tumor progression in Thrb(PV/PV) mice was not due simply to the loss of tumor suppressor functions of TR via mutation but also, importantly, to gain-of-function in the oncogenic activities of PV to drive thyroid carcinogenesis. Thus, the present study identifies a novel mechanism by which a mutated TRβ evolves with an oncogenic advantage to promote thyroid carcinogenesis.

Download full-text


Available from: Alok Mishra, Dec 01, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small-molecule hormones play crucial roles in the development and in the maintenance of an adult mammalian organism. On the molecular level, they regulate a plethora of biological pathways. Part of their actions depends on their transcription-regulating properties, exerted by highly specific nuclear receptors which are hormone-dependent transcription factors. Nuclear hormone receptors interact with coactivators, corepressors, basal transcription factors, and other transcription factors in order to modulate the activity of target genes in a manner that is dependent on tissue, age and developmental and pathophysiological states. The biological effect of this mechanism becomes apparent not earlier than 30-60 minutes after hormonal stimulus. In addition, small-molecule hormones modify the function of the cell by a number of nongenomic mechanisms, involving interaction with proteins localized in the plasma membrane, in the cytoplasm, as well as with proteins localized in other cellular membranes and in nonnuclear cellular compartments. The identity of such proteins is still under investigation; however, it seems that extranuclear fractions of nuclear hormone receptors commonly serve this function. A direct interaction of small-molecule hormones with membrane phospholipids and with mRNA is also postulated. In these mechanisms, the reaction to hormonal stimulus appears within seconds or minutes.
    International Journal of Endocrinology 02/2013; 2013:601246. DOI:10.1155/2013/601246 · 1.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Thyroid hormone receptors (TRs) are ligand-dependent transcription factors that mediate the actions of the thyroid hormone (T3) in development, growth, and differentiation. The THRA and THRB genes encode several TR isoforms that express in a tissue- and development-dependent manner. In the past decades, a significant advance has been made in the understanding of TR actions in maintaining normal cellular functions. However, the roles of TRs in human cancer are less well understood. The reduced expression of TRs because of hypermethylation, or deletion of TR genes found in human cancers suggests that TRs could function as tumor suppressors. A close association of somatic mutations of TRs with human cancers further supports the notion that the loss of normal functions of TR could lead to uncontrolled growth and loss of cell differentiation. SCOPE OF REVIEW: In line with the findings from association studies in human cancers, mice deficient in total functional TRs (Thra1(-/-)Thrb(-/-) mice) or with a targeted homozygous mutation of the Thrb gene (denoted PV; Thrb(PV/PV) mice) spontaneously develop metastatic thyroid carcinoma. This review will examine the evidence learned from these genetically engineered mice that provided strong evidence to support the critical role of TRs in human cancer. MAJOR CONCLUSIONS: Loss of normal functions of TR by deletion or by mutations could contribute to cancer development, progression and metastasis. GENERAL SIGNIFICANCE: Novel mechanistic insights are revealed in how aberrant TR activities lead to carcinogenesis. Mouse models of thyroid cancer provide opportunities to identify molecular targets as potential treatment modalities. This article is part of a Special Issue entitled Thyroid hormone signalling.
    Biochimica et Biophysica Acta 04/2012; 1830(7). DOI:10.1016/j.bbagen.2012.04.002 · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations of the thyroid hormone receptor-β gene (THRB) cause resistance to thyroid hormone (RTH). A mouse model of RTH harboring a homozygous thyroid hormone receptor (TR)-β mutation known as PV (Thrb(PV/PV) mouse) spontaneously develops follicular thyroid cancer (FTC). Similar to RTH patients with mutations of two alleles of the THRB gene, the Thrb(PV/PV) mouse exhibits elevated thyroid hormones accompanied by highly nonsuppressible TSH. However, the heterozygous Thrb(PV/+) mouse with mildly elevated TSH (∼2-fold) does not develop FTC. The present study examined whether the mutation of a single allele of the Thrb gene is sufficient to induce FTC in Thrb(PV/+) mice under stimulation by high TSH. Thrb(PV/+) mice and wild-type siblings were treated with propylthiouracil (PTU) to elevate serum TSH. Thrb(PV/+)mice treated with PTU (Thrb(PV/+)-PTU) spontaneously developed FTC similar to human thyroid cancer, but wild-type siblings treated with PTU did not. Interestingly, approximately 33% of Thrb(PV/+)-PTU mice developed asymmetrical thyroid tumors, as is frequently observed in human thyroid cancer. Molecular analyses showed activation of the cyclin 1-cyclin-dependent kinase-4-transcription factor E2F1 pathway to increase thyroid tumor cell proliferation of Thrb(PV/+)-PTU mice. Moreover, via extranuclear signaling, the PV also activated the integrin-Src-focal adhesion kinase-AKT-metalloproteinase pathway to increase migration and invasion of tumor cells. Therefore, mutation of a single allele of the Thrb gene is sufficient to drive the TSH-simulated hyperplastic thyroid follicular cells to undergo carcinogenesis. The present study suggests that the Thrb(PV/+)-PTU mouse model potentially could be used to gain insights into the molecular basis underlying the association between thyroid cancer and RTH seen in some affected patients.
    Endocrinology 08/2012; 153(10):5090-100. DOI:10.1210/en.2012-1600 · 4.64 Impact Factor