Article

Effects of long-term supplementation of dairy cow diets with rumen-protected conjugated linoleic acids (CLA) on performance, metabolic parameters and fatty acid profile in milk fat.

Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany.
Archives of animal nutrition (Impact Factor: 1.1). 04/2011; 65(2):89-107. DOI: 10.1080/1745039X.2011.552275
Source: PubMed

ABSTRACT The supplementation of conjugated linoleic acids (CLA) to the rations of dairy cows represents an opportunity to reduce the content of milk fat. Therefore, CLA have the potential beneficial effect of reducing energy requirements of the early lactating cow. The present study aimed at the examination of long-term and posttreatment effects of dietary CLA intake on performance, variables of energy metabolism-like plasma levels of non esterified fatty acids (NEFA) and beta-hydroxybutyrate (BHB), and fatty acid profile in milk fat. Forty-six pregnant German Holstein cows were assigned to one of three dietary treatments: (1) 100 g/ d of control fat supplement (CON), (2) 50 g/d of control fat supplement and 50 g/ d of CLA supplement (CLA-1) and (3) 100 g/d of CLA supplement (CLA-2). The lipid-encapsulated CLA supplement consisted of approximately 10% of trans-10, cis-12 CLA and cis-9, trans-11 CLA each. The experiment started 1 d after calving and continued for about 38 weeks, divided into a supplementation (26 weeks) and a depletion period (12 weeks). Over the first 7 weeks of treatment, 11 and 16% reductions in dry matter intake compared to control were observed for the cows fed CLA-1 and CLA-2 supplements respectively. Consequently, the calculated energy balance for these two CLA groups was lower compared to the control. Plasma levels of NEFA and BHB remained unaffected. Later in lactation the highest CLA supplementation resulted in a reduction of milk fat content of 0.7%. However, no reduction in milk fat yield, and accordingly no milk fat depression (MFD), could be shown. The trans-10, cis-12 CLA in milk fat increased with increasing dietary CLA supplementation in a dose-dependent manner. The proportion of C16 in milk fat was decreased by the highest CLA supplementation. With the exception of an increase in plasma glucose level in the CLA-2 group, no post-treatment effects were observed. Overall, under the conditions of the present study no improvement in the calculated energy balance by CLA supplementation could be shown for the entire evaluation period.

1 Bookmark
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Decreasing insulin sensitivity (IS) in peripheral tissues allows for partitioning nutrients towards the mammary gland. In dairy cows, extensive lipid mobilization and continued insulin resistance (IR) are typical for early lactation. Adiponectin, an adipokine, promotes IS. Supplementation with conjugated linoleic acids (CLA) in rodents and humans reduces fat mass whereby IR and hyperinsulinemia may occur. In dairy cows, CLA reduce milk fat, whereas body fat, serum free fatty acids and leptin are not affected. We aimed to investigate the effects of CLA supplementation on serum and adipose tissue (AT) adiponectin concentrations in dairy cows during the lactation driven and parity modulated changes of metabolism. High yielding cows (n=33) were allocated on day 1 post partum to either 100 g/day of a CLA mixture or a control fat supplement (CON) until day 182 post partum. Blood and subcutaneous (sc) AT (AT) biopsy samples were collected until day 252 post partum to measure adiponectin. Serum adiponectin decreased from day 21 pre partum reaching a nadir at calving and thereafter increased gradually. The distribution of adiponectin molecular weight forms was neither affected by time, parity nor treatment. Cows receiving CLA had decreased serum adiponectin concentrations whereby primiparous cows responded about 4 weeks earlier than multiparous cows. The time course of adiponectin concentrations in sc AT (corrected for residual blood) was similar to serum concentrations, without differences between CLA and CON. CLA supplementation attenuated the post partum increase of circulating adiponectin thus acting towards prolongation of peripartal IR and drain of nutrients towards the mammary gland.
    General and Comparative Endocrinology 03/2014; 198:13-21. · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of dietary conjugated linoleic acid (CLA) supplementation on feed intake, growth performance, carcass composition and fatty acid composition of meat tissue were investigated in broiler chickens and Pekin ducks. A total of 108 male chickens for fattening and a total of 96 male and 96 female Pekin ducks were allocated to 3 dietary treatments (0.0, 0.1 and 0.2 % CLA) and fed for 35 or 49 days. The results showed that 0.2 % CLA supplementation in the first 3 weeks improved the daily feed intake of the broilers and the feed to gain ratio, but did not significantly influence body weight, weight and the percentage of abdominal and visceral fat as well as the intramuscular fat in breast muscles. In the duck trial, the daily feed intake was significantly higher through the first 3 weeks of male control group and male 2 g CLA group compared with the female control group. The daily weight gain of all male ducks was significantly higher compared to female ducks of all groups and was not influenced by the CLA supplementation. The feed to gain ratio of the 1 g CLA-male ducks was lowest compared to male and female control ducks and 1 and 2 g CLA female ducks. Supplementing diets with CLA modified the fatty acid composition of breast muscle. The proportion of CLA was increased in broiler meat. In duck meat, the proportions of CLA, saturated fatty acids and polyunsaturated fatty acids were increased and monounsaturated fatty acids were decreased.
    Journal für Verbraucherschutz und Lebensmittelsicherheit 7(1). · 0.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adiponectin is an adipose tissue-derived glycoprotein circulating as highly abundant multimers. It regulates glucose metabolism and insulin sensitivity. In ruminants, valid data about serum concentrations and tissue-specific protein expression are lacking, and we, therefore, aimed to generate a polyclonal antibody against bovine adiponectin to apply it in immunodetection. The specificity of the purified anti-adiponectin antibody was established by Western blot analysis with the use of reducing and denaturing conditions applied to both the purified protein and the bovine serum samples. Besides bovine serum, the applicability of the antibody for immunodetection of adiponectin was confirmed for the supernatant fluid of in vitro-differentiated bovine adipocytes, for protein extracts from bovine adipose tissue, and also in a multispecies comparison: bands comparable in size with monomeric bovine adiponectin were obtained under denaturing conditions in serum of camel, horse, human, mouse, pig, roe deer, and sheep. In addition, when used in immunohistochemistry on bovine adipose tissue sections, a characteristic adipocyte-specific staining pattern was obtained with this antibody. The antibody was used for establishing a semiquantitative Western blot procedure and the development of an ELISA. Both methods were extensively validated and were first applied to characterize the serum adiponectin concentrations in multiparous dairy cows during the transition from pregnancy to lactation, that is, 3 wk before until 5 wk after calving. With both assays a time effect (P = 0.017, P = 0.026, respectively) with lowest values at the day of parturition was observed. We thus established 2 useful tools to validly assess bovine adiponectin at the protein level.
    Domestic animal endocrinology 11/2012; · 1.65 Impact Factor

Full-text

View
34 Downloads
Available from
May 20, 2014

Ronny Kramer