Cornichon-2 Modulates AMPA Receptor-Transmembrane AMPA Receptor Regulatory Protein Assembly to Dictate Gating and Pharmacology

Neuroscience Discovery Research, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 05/2011; 31(18):6928-38. DOI: 10.1523/JNEUROSCI.6271-10.2011
Source: PubMed

ABSTRACT Neuronal AMPA receptor complexes comprise a tetramer of GluA pore-forming subunits as well as accessory components, including transmembrane AMPA receptor regulatory proteins (TARPs) and cornichon-2/3 (CNIH-2/3). The mechanisms that control AMPA receptor complex assembly remain unclear. AMPA receptor responses in neurons differ from those in cell lines transfected with GluA plus TARPs γ-8 or γ-7, which show unusual resensitization kinetics and non-native AMPA receptor pharmacologies. Using tandem GluA/TARP constructs to constrain stoichiometry, we show here that these peculiar kinetic and pharmacological signatures occur in channels with four TARP subunits per complex. Reducing the number of TARPs per complex produces AMPA receptors with neuron-like kinetics and pharmacologies, suggesting a neuronal mechanism controls GluA/TARP assembly. Importantly, we find that coexpression of CNIH-2 with GluA/TARP complexes reduces TARP stoichiometry within AMPA receptors. In both rat and mouse hippocampal neurons, CNIH-2 also associates with AMPA receptors on the neuronal surface in a γ-8-dependent manner to dictate receptor pharmacology. In the cerebellum, however, CNIH-2 expressed in Purkinje neurons does not reach the neuronal surface. In concordance, stargazer Purkinje neurons, which express CNIH-2 and γ-7, display AMPA receptor kinetics/pharmacologies that can only be recapitulated recombinantly by a low γ-7/GluA stoichiometry. Together, these data suggest that CNIH-2 modulates neuronal AMPA receptor auxiliary subunit assembly by regulating the number of TARPs within an AMPA receptor complex to modulate receptor gating and pharmacology.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ionotropic glutamate receptors, which underlie a majority of excitatory synaptic transmission in the CNS, associate with transmembrane proteins that modify their intracellular trafficking and channel gating. Significant advances have been made in our understanding of AMPA-type glutamate receptor (AMPAR) regulation by transmembrane AMPAR regulatory proteins. Less is known about the functional influence of cornichons-unrelated AMPAR-interacting proteins, identified by proteomic analysis. Here we confirm that cornichon homologs 2 and 3 (CNIH-2 and CNIH-3), but not CNIH-1, slow the deactivation and desensitization of both GluA2-containing calcium-impermeable and GluA2-lacking calcium-permeable (CP) AMPARs expressed in tsA201 cells. CNIH-2 and -3 also enhanced the glutamate sensitivity, single-channel conductance, and calcium permeability of CP-AMPARs while decreasing their block by intracellular polyamines. We examined the potential effects of CNIHs on native AMPARs by recording from rat optic nerve oligodendrocyte precursor cells (OPCs), known to express a significant population of CP-AMPARs. These glial cells exhibited surface labeling with an anti-CNIH-2/3 antibody. Two features of their AMPAR-mediated currents-the relative efficacy of the partial agonist kainate (I(KA)/I(Glu) ratio 0.4) and a greater than fivefold potentiation of kainate responses by cyclothiazide-suggest AMPAR association with CNIHs. Additionally, overexpression of CNIH-3 in OPCs markedly slowed AMPAR desensitization. Together, our experiments support the view that CNIHs are capable of altering key properties of AMPARs and suggest that they may do so in glia.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 07/2012; 32(29):9796-804. DOI:10.1523/JNEUROSCI.0345-12.2012 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pore-forming subunits of ion channels show channel activity in heterologous cells. However, recombinant and native channels often differ in their channel properties. These discrepancies are resolved by the identification of channel auxiliary subunits. In this review article, an auxiliary subunit of ligand-gated ion channels is defined using four criteria: (1) as a Non-pore-forming subunit, (2) direct and stable interaction with a pore-forming subunit, (3) modulation of channel properties and/or trafficking in heterologous cells, (4) necessity in vivo. We focus particularly on three classes of ionotropic glutamate receptors and their transmembrane interactors. Precise identification of auxiliary subunits and reconstruction of native glutamate receptors will open new directions to understanding the brain and its functions.
    The Journal of Physiology 09/2011; 590(Pt 1):21-31. DOI:10.1113/jphysiol.2011.213868 · 4.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: At excitatory synapses in the brain, glutamate released from nerve terminals binds to glutamate receptors to mediate signaling between neurons. Glutamate receptors expressed in heterologous cells show ion channel activity. Recently, native glutamate receptors were shown to contain auxiliary subunits that modulate the trafficking and/or channel properties. The AMPA receptor (AMPAR) can contain TARP and CNIHs as the auxiliary subunits, whereas kainate receptor (KAR) can contain the Neto auxiliary subunit. Each of these auxiliary subunits uniquely modulates the glutamate receptors, and determines properties of native glutamate receptors. A thorough elucidation of the properties of native glutamate receptor complexes is indispensable for the understanding of the molecular machinery that regulates glutamate receptors and excitatory synaptic transmission in the brain.
    Current opinion in neurobiology 10/2011; 22(3):488-95. DOI:10.1016/j.conb.2011.09.005 · 6.77 Impact Factor