Article

Use of a secretion trap screen in pepper following Phytophthora capsici infection reveals novel functions of secreted plant proteins in modulating cell death.

Department of Plant Science, Seoul National University, Seoul, Republic of Korea.
Molecular Plant-Microbe Interactions (Impact Factor: 4.31). 06/2011; 24(6):671-84. DOI: 10.1094/MPMI-08-10-0183
Source: PubMed

ABSTRACT In plants, the primary defense against pathogens is mostly inducible and associated with cell wall modification and defense-related gene expression, including many secreted proteins. To study the role of secreted proteins, a yeast-based signal-sequence trap screening was conducted with the RNA from Phytophthora capsici-inoculated root of Capsicum annuum 'Criollo de Morelos 334' (CM334). In total, 101 Capsicum annuum secretome (CaS) clones were isolated and identified, of which 92 were predicted to have a secretory signal sequence at their N-terminus. To identify differences in expressed CaS genes between resistant and susceptible cultivars of pepper, reverse Northern blots and real-time reverse-transcription polymerase chain reaction were performed with RNA samples isolated at different time points following P. capsici inoculation. In an attempt to assign biological functions to CaS genes, we performed in planta knock-down assays using the Tobacco rattle virus-based gene-silencing method. Silencing of eight CaS genes in pepper resulted in suppression of the cell death induced by the non-host bacterial pathogen (Pseudomonas syringae pv. tomato T1). Three CaS genes induced phenotypic abnormalities in silenced plants and one, CaS259 (PR4-l), caused both cell death suppression and perturbed phenotypes. These results provide evidence that the CaS genes may play important roles in pathogen defense as well as developmental processes.

0 Bookmarks
 · 
79 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Secreted proteins are known to have multiple roles in plant development, metabolism, and stress response. In a previous study to understand the roles of secreted proteins, Capsicum annuum secreted proteins (CaS) were isolated by yeast secretion trap. Among the secreted proteins, we further characterized Capsicum annuum senescence-delaying 1 (CaSD1), a gene encoding a novel secreted protein that is present only in the genus Capsicum. The deduced CaSD1 contains multiple repeats of the amino acid sequence KPPIHNHKPTDYDRS. Interestingly, the number of repeats varied among cultivars and species in the Capsicum genus. CaSD1 is constitutively expressed in roots, and Agrobacterium-mediated transient overexpression of CaSD1 in Nicotiana benthamiana leaves resulted in delayed senescence with a dramatically increased number of trichomes and enlarged epidermal cells. Furthermore, senescence- and cell division-related genes were differentially regulated by CaSD1-overexpressing plants. These observations imply that the pepper-specific cell wall protein CaSD1 plays roles in plant growth and development by regulating cell division and differentiation.
    Molecules and Cells 03/2012; 33(4):415-22. · 2.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metacaspases, which belong to the cysteine-type C14 protease family, are most structurally similar to mammalian caspases than any other caspase-like protease in plants. Atmc9 (Arabidopsis thaliana metacaspase 9) has a unique domain structure, and distinct biochemical characteristics, such as Ca(2+) binding, pH, redox status, S-nitrosylation and specific protease inhibitors. However, the biological roles of Atmc9 in plant-pathogen interactions remain largely unknown. In this study, a metacaspase gene present as a single copy in the pepper genome, and sharing 54% amino acid sequence identity with Atmc9, was isolated and named Capsicum annuum metacaspase 9 (Camc9). Camc9 encodes a 318-amino-acid polypeptide with an estimated molecular weight of 34.6 kDa, and shares approximately 40% amino acid sequence identity with known type II metacaspases in plants. Quantitative reverse transcription-polymerase chain reaction analyses revealed that the expression of Camc9 was induced by infections of Xanthomonas campestris pv. vesicatoria race 1 and race 3 and treatment with methyl jasmonate. Suppression of Camc9 expression using virus-induced gene silencing enhanced disease resistance and suppressed cell death symptom development following infection with virulent bacterial pathogens. By contrast, overexpression of Camc9 by transient or stable transformation enhanced disease susceptibility and pathogen-induced cell death by regulation of reactive oxygen species production and defence-related gene expression. These results suggest that Camc9 is a possible member of the metacaspase gene family and plays a role as a positive regulator of pathogen-induced cell death in the plant kingdom.
    Molecular Plant Pathology 03/2013; · 3.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The most significant threat to pepper production worldwide is the Phytophthora blight, which is caused by the oomycete pathogen, Phytophthora capsici Leonian. In an effort to help control this disease, we isolated and characterized a P. capsici resistance gene, CaRGA2, from a high resistant pepper (C. annuum CM334) and analyzed its function by the method of real-time PCR and virus-induced gene silencing (VIGS). The CaRGA2 has a full-length cDNA of 3,018 bp with 2,874 bp open reading frame (ORF) and encodes a 957-aa protein. The protein has a predicted molecular weight of 108.6 kDa, and the isoelectric point is 8.106. Quantitative real-time PCR indicated that CaRGA2 expression was rapidly induced by P. capsici. The gene expression pattern was different between the resistant and susceptible cultivars. CaRGA2 was quickly expressed in the resistant cultivar, CM334, and reached to a peak at 24 h after inoculation with P. capsici, five-fold higher than that of susceptible cultivar. Our results suggest that CaRGA2 has a distinct pattern of expression and plays a critical role in P. capsici stress tolerance. When the CaRGA2 gene was silenced via VIGS, the resistance level was clearly suppressed, an observation that was supported by semi-quantitative RT-PCR and detached leave inoculation. VIGS analysis revealed their importance in the surveillance to P. capsici in pepper. Our results support the idea that the CaRGA2 gene may show their response in resistance against P. capsici. These analyses will aid in an effort towards breeding for broad and durable resistance in economically important pepper cultivars.
    International Journal of Molecular Sciences 01/2013; 14(5):8985-9004. · 2.46 Impact Factor

Full-text

View
8 Downloads
Available from
May 29, 2014