Article

Use of a secretion trap screen in pepper following Phytophthora capsici infection reveals novel functions of secreted plant proteins in modulating cell death.

Department of Plant Science, Seoul National University, Seoul, Republic of Korea.
Molecular Plant-Microbe Interactions (Impact Factor: 4.31). 06/2011; 24(6):671-84. DOI: 10.1094/MPMI-08-10-0183
Source: PubMed

ABSTRACT In plants, the primary defense against pathogens is mostly inducible and associated with cell wall modification and defense-related gene expression, including many secreted proteins. To study the role of secreted proteins, a yeast-based signal-sequence trap screening was conducted with the RNA from Phytophthora capsici-inoculated root of Capsicum annuum 'Criollo de Morelos 334' (CM334). In total, 101 Capsicum annuum secretome (CaS) clones were isolated and identified, of which 92 were predicted to have a secretory signal sequence at their N-terminus. To identify differences in expressed CaS genes between resistant and susceptible cultivars of pepper, reverse Northern blots and real-time reverse-transcription polymerase chain reaction were performed with RNA samples isolated at different time points following P. capsici inoculation. In an attempt to assign biological functions to CaS genes, we performed in planta knock-down assays using the Tobacco rattle virus-based gene-silencing method. Silencing of eight CaS genes in pepper resulted in suppression of the cell death induced by the non-host bacterial pathogen (Pseudomonas syringae pv. tomato T1). Three CaS genes induced phenotypic abnormalities in silenced plants and one, CaS259 (PR4-l), caused both cell death suppression and perturbed phenotypes. These results provide evidence that the CaS genes may play important roles in pathogen defense as well as developmental processes.

0 Bookmarks
 · 
92 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Secreted proteins are known to have multiple roles in plant development, metabolism, and stress response. In a previous study to understand the roles of secreted proteins, Capsicum annuum secreted proteins (CaS) were isolated by yeast secretion trap. Among the secreted proteins, we further characterized Capsicum annuum senescence-delaying 1 (CaSD1), a gene encoding a novel secreted protein that is present only in the genus Capsicum. The deduced CaSD1 contains multiple repeats of the amino acid sequence KPPIHNHKPTDYDRS. Interestingly, the number of repeats varied among cultivars and species in the Capsicum genus. CaSD1 is constitutively expressed in roots, and Agrobacterium-mediated transient overexpression of CaSD1 in Nicotiana benthamiana leaves resulted in delayed senescence with a dramatically increased number of trichomes and enlarged epidermal cells. Furthermore, senescence- and cell division-related genes were differentially regulated by CaSD1-overexpressing plants. These observations imply that the pepper-specific cell wall protein CaSD1 plays roles in plant growth and development by regulating cell division and differentiation.
    Molecules and Cells 03/2012; 33(4):415-22. · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we investigated the activities of β-1,3-glucanase and peroxidase enzymes in the leaves of pepper cultivar A3 infected with the incompatible strain PC and the compatible strain HX-9 of Phytophthora capsici. The activities of β-1,3-glucanase and peroxidase enzymes substantially increased in the incompatible interactions compared to the compatible interactions. We also analysed the expression patterns of four defence-related genes, including CABPR1, CABGLU, CAPO1 and CaRGA1, in the leaves and roots of pepper inoculated with different strains of P. capsici. All gene expression levels were higher in the leaves than in the roots. Markedly different expression patterns were observed between incompatible and compatible host-pathogen interactions. In the incompatible interactions, the expression levels of CABPR1, CABGLU and CAPO1 genes in leaves increased by a maximum of 17.2-, 13.2- and 20.5-fold at 24, 12 and 12 h, respectively, whereas the CaRGA1 gene expression level increased to a lesser degree, 6.0-fold at 24 h. However, in the compatible interactions, the expression levels of the four defence-related genes increased by a maximum of 11.2-, 8.6-, 7.9- and 2.0-fold at 48, 24, 48 and 72 h, respectively. Compared to the leaves, the expression levels of the four defence-related genes were much lower in the roots. The highest levels of mRNA were those of the CABPR1 gene, which increased 5.1-fold at 24 h in the incompatible and 3.2-fold at 48 h in the compatible interactions. The other three genes exhibited lower expression levels in the incompatible and compatible interactions. These results further confirmed that defence-related genes might be involved in the defence response of pepper to P. capsici attack.
    European Journal of Plant Pathology 136(3). · 1.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Cmr1 gene in peppers confers resistance to Cucumber mosaic virus isolate-P0 (CMV-P0). Cmr1 restricts the systemic spread of CMV strain-Fny (CMV-Fny), whereas this gene cannot block the spread of CMV isolate-P1 (CMV-P1) to the upper leaves, resulting in systemic infection. To identify the virulence determinant of CMV-P1, six reassortant viruses and six chimeric viruses derived from CMV-Fny and CMV-P1 cDNA clones were used. Our results demonstrate that the C-terminus of the helicase domain encoded by CMV-P1 RNA1 determines susceptibility to systemic infection, and that the helicase domain contains six different amino acid substitutions between CMV-Fny and CMV-P1(.) To identify the key amino acids of the helicase domain determining systemic infection with CMV-P1, we then constructed amino acid substitution mutants. Of the mutants tested, amino acid residues at positions 865, 896, 957, and 980 in the 1a protein sequence of CMV-P1 affected the systemic infection. Virus localization studies with GFP-tagged CMV clones and in situ localization of virus RNA revealed that these four amino acid residues together form the movement determinant for CMV-P1 movement from the epidermal cell layer to mesophyll cell layers. Quantitative real-time PCR revealed that CMV-P1 and a chimeric virus with four amino acid residues of CMV-P1 accumulated more genomic RNA in inoculated leaves than did CMV-Fny, indicating that those four amino acids are also involved in virus replication. These results demonstrate that the C-terminal region of the helicase domain is responsible for systemic infection by controlling virus replication and cell-to-cell movement. Whereas four amino acids are responsible for acquiring virulence in CMV-Fny, six amino acid (positions at 865, 896, 901, 957, 980 and 993) substitutions in CMV-P1 were required for complete loss of virulence in 'Bukang'.
    PLoS ONE 01/2012; 7(8):e43136. · 3.53 Impact Factor

Full-text

View
8 Downloads
Available from
May 29, 2014