Functional modules distinguish human induced pluripotent stem cells from embryonic stem cells.

Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA.
Stem cells and development (Impact Factor: 4.15). 06/2011; 20(11):1937-50. DOI: 10.1089/scd.2010.0574
Source: PubMed

ABSTRACT It has been debated whether human induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) express distinctive transcriptomes. By using the method of weighted gene co-expression network analysis, we showed here that iPSCs exhibit altered functional modules compared with ESCs. Notably, iPSCs and ESCs differentially express 17 modules that primarily function in transcription, metabolism, development, and immune response. These module activations (up- and downregulation) are highly conserved in a variety of iPSCs, and genes in each module are coherently co-expressed. Furthermore, the activation levels of these modular genes can be used as quantitative variables to discriminate iPSCs and ESCs with high accuracy (96%). Thus, differential activations of these functional modules are the conserved features distinguishing iPSCs from ESCs. Strikingly, the overall activation level of these modules is inversely correlated with the DNA methylation level, suggesting that DNA methylation may be one mechanism regulating the module differences. Overall, we conclude that human iPSCs and ESCs exhibit distinct gene expression networks, which are likely associated with different epigenetic reprogramming events during the derivation of iPSCs and ESCs.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: To discover a common gene co-expression network in cancer cell, we applied weighted gene co-expression network analysis to transcriptional profiles of 917 cancer cell lines. Fourteen biologically meaningful modules were identified, including cytoskeleton, cell cycle, RNA splicing, signaling pathway, transcription, translation and others. These modules were robust in an independent human cancer microarray dataset. Furthermore, we collected 11 independent cancer microarray datasets, and correlated these modules with clinical outcome. Most of these modules could predict patient survival in one or more cancer types. Some modules were predictive of relapse, metastasis and drug resistance. Novel regulatory mechanisms were also implicated. In summary, our findings, for the first time, provide a modular map for cancer cell lines, new targets for therapy and modules for regulatory mechanism of cancer development and drug resistance. © 2014 Wiley Periodicals, Inc.
    International Journal of Cancer 04/2014; · 6.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic regulation is critical for the maintenance of human pluripotent stem cells. It has been shown that pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells, appear to have a hypermethylated status compared with differentiated cells. However, the epigenetic differences in genes that maintain stemness and regulate reprogramming between embryonic stem cells and induced pluripotent stem cells remain unclear. Additionally, differential methylation patterns of induced pluripotent stem cells generated using diverse methods require further study.
    PLoS ONE 09/2014; 9(9):e108350. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human iPS cells have been generated using a diverse range of tissues from a variety of donors using different reprogramming vectors. However, these cell lines are heterogeneous, which presents a limitation for their use in disease modeling and personalized medicine. To explore the basis of this heterogeneity we generated 25 iPS cell lines under normalised conditions from the same set of somatic tissues across a number of donors. RNA-seq data sets from each cell line were compared to identify the majority contributors to transcriptional heterogeneity. We found that genetic differences between individual donors were the major cause of transcriptional variation between lines. In contrast, residual signatures from the somatic cell of origin, so called epigenetic memory, contributed relatively little to transcriptional variation. Thus, underlying genetic background variation is responsible for most heterogeneity between human iPS cell lines. We conclude that epigenetic effects in hIPSCs are minimal, and that hIPSCs are a stable, robust and powerful platform for large-scale studies of the function of genetic differences between individuals. Our data also suggest that future studies using hIPSCs as a model system should focus most effort on collection of large numbers of donors, rather than generating large numbers of lines from the same donor.
    PLoS Genetics 06/2014; 10(6):e1004432. · 8.17 Impact Factor

Full-text (3 Sources)

Available from
Sep 15, 2014