Article

A Mighty Small Heart: The Cardiac Proteome of Adult Drosophila melanogaster

Development and Aging Program, NASCR Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America.
PLoS ONE (Impact Factor: 3.53). 04/2011; 6(4):e18497. DOI: 10.1371/journal.pone.0018497
Source: PubMed

ABSTRACT Drosophila melanogaster is emerging as a powerful model system for the study of cardiac disease. Establishing peptide and protein maps of the Drosophila heart is central to implementation of protein network studies that will allow us to assess the hallmarks of Drosophila heart pathogenesis and gauge the degree of conservation with human disease mechanisms on a systems level. Using a gel-LC-MS/MS approach, we identified 1228 protein clusters from 145 dissected adult fly hearts. Contractile, cytostructural and mitochondrial proteins were most abundant consistent with electron micrographs of the Drosophila cardiac tube. Functional/Ontological enrichment analysis further showed that proteins involved in glycolysis, Ca(2+)-binding, redox, and G-protein signaling, among other processes, are also over-represented. Comparison with a mouse heart proteome revealed conservation at the level of molecular function, biological processes and cellular components. The subsisting peptidome encompassed 5169 distinct heart-associated peptides, of which 1293 (25%) had not been identified in a recent Drosophila peptide compendium. PeptideClassifier analysis was further used to map peptides to specific gene-models. 1872 peptides provide valuable information about protein isoform groups whereas a further 3112 uniquely identify specific protein isoforms and may be used as a heart-associated peptide resource for quantitative proteomic approaches based on multiple-reaction monitoring. In summary, identification of excitation-contraction protein landmarks, orthologues of proteins associated with cardiovascular defects, and conservation of protein ontologies, provides testimony to the heart-like character of the Drosophila cardiac tube and to the utility of proteomics as a complement to the power of genetics in this growing model of human heart disease.

Download full-text

Full-text

Available from: D. Brian Foster, Aug 19, 2015
0 Followers
 · 
192 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gabriel Haddad – Pediatrics Department, University of California, San Diego, CA, USA
    Drug Discovery Today Disease Models 06/2009; 6(2):47-54. DOI:10.1016/j.ddmod.2009.11.002
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two Drosophila myosin II point mutations (D45 and Mhc5) generate Drosophila cardiac phenotypes that are similar to dilated or restrictive human cardiomyopathies. Our homology models suggest that the mutations (A261T in D45, G200D in Mhc5) could stabilize (D45) or destabilize (Mhc5) loop 1 of myosin, a region known to influence ADP release. To gain insight into the molecular mechanism that causes the cardiomyopathic phenotypes to develop, we determined whether the kinetic properties of the mutant molecules have been altered. We used myosin subfragment 1 (S1) carrying either of the two mutations (S1A261T and S1G200D) from the indirect flight muscles of Drosophila. The kinetic data show that the two point mutations have an opposite effect on the enzymatic activity of S1. S1A261T is less active (reduced ATPase, higher ADP affinity for S1 and actomyosin subfragment 1 (actin·S1), and reduced ATP-induced dissociation of actin·S1), whereas S1G200D shows increased enzymatic activity (enhanced ATPase, reduced ADP affinity for both S1 and actin·S1). The opposite changes in the myosin properties are consistent with the induced cardiac phenotypes for S1A261T (dilated) and S1G200D (restrictive). Our results provide novel insights into the molecular mechanisms that cause different cardiomyopathy phenotypes for these mutants. In addition, we report that S1A261T weakens the affinity of S1·ADP for actin, whereas S1G200D increases it. This may account for the suppression (A261T) or enhancement (G200D) of the skeletal muscle hypercontraction phenotype induced by the troponin I held-up2 mutation in Drosophila.
    Journal of Biological Chemistry 06/2011; 286(32):28435-43. DOI:10.1074/jbc.M111.258228 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging is marked by a decline in LV diastolic function, which encompasses abnormalities in diastolic relaxation, chamber filling and/or passive myocardial stiffness. Genetic tractability and short life span make Drosophila melanogaster an ideal organism to study the effects of aging on heart function, including senescent-associated changes in gene expression and in passive myocardial stiffness. However, use of the Drosophila heart tube to probe deterioration of diastolic performance is subject to at least two challenges: the extent of genetic homology to mammals and the ability to resolve mechanical properties of the bilayered fly heart, which consists of a ventral muscle layer that covers the contractile cardiomyocytes. Here, we argue for widespread use of Drosophila as a novel myocardial aging model by (1) describing diastolic dysfunction in flies, (2) discussing how critical pathways involved in dysfunction are conserved across species and (3) demonstrating the advantage of an atomic force microscopy-based analysis method to measure stiffness of the multilayered Drosophila heart tube versus isolated myocytes from other model systems. By using powerful Drosophila genetic tools, we aim to efficiently alter changes observed in factors that contribute to diastolic dysfunction to understand how one might improve diastolic performance at advanced ages in humans.
    Journal of Cellular and Molecular Medicine 01/2012; 16(8):1656-62. DOI:10.1111/j.1582-4934.2011.01517.x · 3.70 Impact Factor
Show more