Article

A Mighty Small Heart: The Cardiac Proteome of Adult Drosophila melanogaster

Development and Aging Program, NASCR Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America.
PLoS ONE (Impact Factor: 3.53). 04/2011; 6(4):e18497. DOI: 10.1371/journal.pone.0018497
Source: PubMed

ABSTRACT Drosophila melanogaster is emerging as a powerful model system for the study of cardiac disease. Establishing peptide and protein maps of the Drosophila heart is central to implementation of protein network studies that will allow us to assess the hallmarks of Drosophila heart pathogenesis and gauge the degree of conservation with human disease mechanisms on a systems level. Using a gel-LC-MS/MS approach, we identified 1228 protein clusters from 145 dissected adult fly hearts. Contractile, cytostructural and mitochondrial proteins were most abundant consistent with electron micrographs of the Drosophila cardiac tube. Functional/Ontological enrichment analysis further showed that proteins involved in glycolysis, Ca(2+)-binding, redox, and G-protein signaling, among other processes, are also over-represented. Comparison with a mouse heart proteome revealed conservation at the level of molecular function, biological processes and cellular components. The subsisting peptidome encompassed 5169 distinct heart-associated peptides, of which 1293 (25%) had not been identified in a recent Drosophila peptide compendium. PeptideClassifier analysis was further used to map peptides to specific gene-models. 1872 peptides provide valuable information about protein isoform groups whereas a further 3112 uniquely identify specific protein isoforms and may be used as a heart-associated peptide resource for quantitative proteomic approaches based on multiple-reaction monitoring. In summary, identification of excitation-contraction protein landmarks, orthologues of proteins associated with cardiovascular defects, and conservation of protein ontologies, provides testimony to the heart-like character of the Drosophila cardiac tube and to the utility of proteomics as a complement to the power of genetics in this growing model of human heart disease.

Full-text

Available from: D. Brian Foster, May 30, 2015
0 Followers
 · 
182 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Drosophila heart has gained considerable traction as a model of cardiac development and physiology. Previously we described a semiautomatic optical heartbeat analysis (SOHA) method for quantifying functional parameters from the fly heart that facilitated its use as an organ system and disease model. Here we present an extensively rewritten version of the original SOHA program that takes advantage of additional information contained in high-speed videos of beating hearts. Program updates allow more precise quantification of cardiac contractions, increase the signal-to-noise ratio, and reduce the overall cost and time required to analyze recordings. This new SOHA version permits relatively rapid and highly accurate determination of subphases of contraction and relaxation. Importantly, the improved functionality enables the calculation of novel physiological data, suggesting that the fly model system may also be practical for screening drugs and alleles that modulate cardiac repolarization and force production.
    BioTechniques 01/2014; 58(2):77-80. DOI:10.2144/000114255 · 2.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In striated muscle tropomyosin (Tm) extends along the length of F-actin-containing thin filaments. Its location governs access of myosin binding sites on actin and, hence, force production. Intermolecular electrostatic associations are believed to mediate critical interactions between the proteins. For example, actin residues K326, K328, and R147 were predicted to establish contacts with E181 of Tm. Moreover, K328 also potentially forms direct interactions with E286 of myosin when the motor is strongly bound. Recently, LC-MS/MS analysis of the cardiac acetyl-lysine proteome revealed K326 and K328 of actin were acetylated, a post-translational modification (PTM) that masks the residues' inherent positive charges. Here, we tested the hypothesis that by removing the vital actin charges at residues 326 and 328, the PTM would perturb Tm positioning and/or strong myosin binding as manifested by altered skeletal muscle function and structure in the Drosophila melanogaster model system. Transgenic flies were created that permit tissue-specific expression of K326Q, K328Q, or K326Q/K328Q acetyl-mimetic actin and of wild-type actin via the UAS-GAL4 bipartite expression system. Compared to wild-type actin, muscle-restricted expression of mutant actin had a dose-dependent effect on flight ability. Moreover, excessive K328Q and K326Q/K328Q actin overexpression induced indirect flight muscle degeneration, a phenotype consistent with hypercontraction observed in other Drosophila myofibrillar mutants. Based on F-actin-Tm and F-actin-Tm-myosin models and on our physiological data, we conclude that acetylating K326 and K328 of actin alters electrostatic associations with Tm and/or myosin and thereby augments contractile properties. Our findings highlight the utility of Drosophila as a model that permits efficient targeted design and assessment of molecular and tissue-specific responses to muscle protein modifications, in vivo.
    Frontiers in Physiology 04/2015; 6:116. DOI:10.3389/fphys.2015.00116
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most of our knowledge on PTPs is derived from human pathologies and mouse knockout models. These models largely correlate well with human disease phenotypes, but can be ambiguous due to compensatory mechanisms introduced by paralogous genes. Here we present the analysis of the PTP complement of the fruit fly and the complementary view that PTP studies in Drosophila will accelerate our understanding of PTPs in physiological and pathological conditions. With only 44 PTP genes, Drosophila represents a streamlined version of the human complement. Our integrated analysis places the Drosophila PTPs into evolutionary and functional contexts, thereby providing a platform for the exploitation of the fly for PTP research and the transfer of knowledge onto other model systems. Copyright © 2015. Published by Elsevier B.V.
    FEBS Letters 03/2015; 589(9). DOI:10.1016/j.febslet.2015.03.005 · 3.34 Impact Factor