Characterization of the Antibody Response to the Saliva of Phlebotomus papatasi in People Living in Endemic Areas of Cutaneous Leishmaniasis

Institut Pasteur de Tunis, Tunis-Ville, Tūnis, Tunisia
The American journal of tropical medicine and hygiene (Impact Factor: 2.7). 05/2011; 84(5):653-61. DOI: 10.4269/ajtmh.2011.10-0598
Source: PubMed


Important data obtained in mice raise the possibility that immunization against the saliva of sand flies could protect from leishmaniasis. Sand fly saliva stimulates the production of specific antibodies in individuals living in endemic areas of parasite transmission. To characterize the humoral immune response against the saliva of Phlebotomus papatasi in humans, we carried out a prospective study on 200 children living in areas of Leishmania major transmission. We showed that 83% of donors carried anti-saliva IgG antibodies, primarily of IgG4 isotype. Positive sera reacted differentially with seven salivary proteins. The protein PpSP30 was prominently recognized by all the sera. The salivary proteins triggered the production of various antibody isotypes. Interestingly, the immunodominant PpSP30 was recognized by all IgG subclasses, whereas PpSP12 was not by IgG4. Immunoproteomic analyses may help to identify the impact of each salivary protein on the L. major infection and to select potential vaccine candidates.

Download full-text


Available from: Soumaya Marzouki, Oct 05, 2015
15 Reads
  • Source
    • "Indeed, individuals in contact with the vectors' bites could produce various levels (high to low) of antisaliva Ab response which depend on the real level of human exposure to vectors bites. This evidence has been demonstrated for a wide range of vectors, such as tick [11] [12] [13] [14], mosquito [15– 19], and sand flies [20] [21] [22] [23]. Furthermore, this biomarker approach has been used to evaluate the efficacy of vector control strategy employed in the field by the quantitative evaluation of antisaliva immunoglobulin G (IgG). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aedes borne viruses represent public health problems in southern countries and threat to emerge in the developed world. Their control is currently based on vector population control. Much effort is being devoted to develop new tools to control such arbovirus. Recent findings suggest that the evaluation of human antibody (Ab) response to arthropod salivary proteins is relevant to measuring the level of human exposure to mosquito bites. Using an immunoepidemiological approach, the present study aimed to assess the usefulness of the salivary biomarker for measuring the efficacy of Ae. albopictus control strategies in La Reunion urban area. The antisaliva Ab response of adult humans exposed to Ae. albopictus was evaluatedbefore and after vector control measures. Our results showed a significant correlation between antisaliva Ab response and the level of exposure to vectors bites. The decrease of Ae. albopictus density has been detected by this biomarker two weeks after the implementation of control measures, suggesting its potential usefulness for evaluating control strategies in a short time period. The identification of species specific salivary proteins/peptides should improve the use of this biomarker.
    04/2014; 2014:746509. DOI:10.1155/2014/746509
  • Source
    • "These results were validated in a sample of 1077 individuals, and detection levels improved significantly when the two proteins were used in combination (85). A prospective study conducted in Tunisia with a cohort of 200 children showed that IgG antibodies (primarily IgG4) against P. papatasi SGS were associated with an increased risk of CL caused by L. major (86). In a subsequent study, recombinant PpSP32 was described as the immunodominant antigen in the humoral response, acting as a marker of sand-fly exposure (87). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Leishmaniases are worldwide diseases transmitted to the vertebrate host by the bite of an infected sand-fly. Sand-fly biting and parasite inoculation are accompanied by the injection of salivary molecules, whose immunomodulatory properties are actively being studied. This mini review focuses on how the interactions between sand-fly saliva and the immune system may shape the outcome of infection, given its immunomodulatory properties, in experimental models and in the endemic area. Additionally, we approach the recent contributions regarding the identification of individual salivary components and how these are currently being considered as additional components of a vaccine against leishmaniasis.
    Frontiers in Immunology 11/2013; 4:375. DOI:10.3389/fimmu.2013.00375
  • Source
    • "Antibodies (IgG) specifically recognizing sand fly D7 proteins were found in dogs naturally exposed to Lu. longipalpis sand flies [38], [39]. Furthermore, it was recently shown that a salivary protein of approximately 30 kDa was an immunodominant salivary protein from P. papatasi in humans exposed to this sand fly [7]. It is possible that PPTSP28 and/or PPTSP30, which run at similar molecular weights, could be this immunodominant antigen in humans. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Sand fly saliva plays an important role in both blood feeding and outcome of Leishmania infection. A cellular immune response against a Phlebotomus papatasi salivary protein was shown to protect rodents against Leishmania major infection. In humans, P. papatasi salivary proteins induce a systemic cellular immune response as well as a specific antisaliva humoral immune response, making these salivary proteins attractive targets as markers of exposure for this Leishmania vector. Surprisingly, the repertoire of salivary proteins reported for P. papatasi-a model sand fly for Leishmania-vector-host molecular interactions-is very limited compared with other sand fly species. We hypothesize that a more comprehensive study of the transcripts present in the salivary glands of P. papatasi will provide better knowledge of the repertoire of proteins of this important vector and will aid in selection of potential immunogenic proteins for humans and of those proteins that are highly conserved between different sand fly strains. A cDNA library from P. papatasi (Tunisian strain) salivary glands was constructed, and randomly selected transcripts were sequenced and analyzed. The most abundant transcripts encoding secreted proteins were identified and compared with previously reported sequences. Importantly, we identified salivary proteins not described before in this sand fly species. Comparative analysis between the salivary proteins of P. papatasi from Tunisia and Israel strains shows a high level of identity, suggesting these proteins as potential common targets for markers of vector exposure or inducers of cellular immune responses in humans for different geographic areas.
    PLoS ONE 11/2012; 7(11):e47347. DOI:10.1371/journal.pone.0047347 · 3.23 Impact Factor
Show more