Isolation of mouse pancreatic alpha, beta, duct and acinar populations with cell surface markers.

Oregon Health and Science University and Oregon Stem Cell Center, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA.
Molecular and Cellular Endocrinology (Impact Factor: 4.24). 06/2011; 339(1-2):144-50. DOI: 10.1016/j.mce.2011.04.008
Source: PubMed

ABSTRACT Tools permitting the isolation of live pancreatic cell subsets for culture and/or molecular analysis are limited. To address this, we developed a collection of monoclonal antibodies with selective surface labeling of endocrine and exocrine pancreatic cell types. Cell type labeling specificity and cell surface reactivity were validated on mouse pancreatic sections and by gene expression analysis of cells isolated using FACS. Five antibodies which marked populations of particular interest were used to isolate and study viable populations of purified pancreatic ducts, acinar cells, and subsets of acinar cells from whole pancreatic tissue or of alpha or beta cells from isolated mouse islets. Gene expression analysis showed the presence of known endocrine markers in alpha and beta cell populations and revealed that TTR and DPPIV are primarily expressed in alpha cells whereas DGKB and GPM6A have a beta cell specific expression profile.

  • [Show abstract] [Hide abstract]
    ABSTRACT: β Cells represent one of many cell types in heterogeneous pancreatic islets and play the central role in maintaining glucose homeostasis, such that disrupting β-cell function leads to diabetes. This review summarizes the methods for isolating and characterizing β cells, and describes integrated 'omics' approaches used to define the β cell by its transcriptome and proteome. RNA sequencing and mass spectrometry-based protein identification have now identified RNA and protein profiles for mouse and human pancreatic islets and β cells, and for β-cell lines. Recent publications have outlined these profiles and, more importantly, have begun to assign the presence or absence of specific genes and regulatory molecules to β-cell function and dysfunction. Overall, researchers have focused on understanding the pathophysiology of diabetes by connecting genome, transcriptome, proteome, and regulatory RNA profiles with findings from genome-wide association studies. Studies employing these relatively new techniques promise to identify specific genes or regulatory RNAs with altered expression as β-cell function begins to deteriorate in the spiral toward the development of diabetes. The ultimate goal is to identify the potential therapeutic targets to prevent β-cell dysfunction and thereby better treat the individual with diabetes.
    Current opinion in endocrinology, diabetes, and obesity 02/2014; DOI:10.1097/MED.0000000000000051 · 3.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes is a leading cause of morbidity and mortality worldwide, and predicted to affect over 500 million people by 2030. However, this growing burden of disease has not been met with a comparable expansion in therapeutic options. The appreciation of the pancreatic β-cell as a central player in the pathogenesis of both type 1 and type 2 diabetes has renewed focus on ways to improve glucose homeostasis by preserving, expanding and improving the function of this key cell type. Here, we provide an overview of the latest developments in this field, with an emphasis on the most promising strategies identified to date for treating diabetes by targeting the β-cell.
    dressNature Reviews Drug Discovery 02/2014; DOI:10.1038/nrd4231 · 37.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Primary cilia play an essential role in modulating signaling cascades that shape cellular responses to environmental cues to maintain proper tissue development. Mutations in primary cilium proteins have been linked to several rare developmental disorders, collectively known as ciliopathies. Together with other disorders associated with dysfunctional cilia/centrosomes, affected individuals have increased risk of developing metabolic syndrome, neurologic disorders, and diabetes. In pancreatic tissues, cilia are found exclusively in islet and ductal cells where they play an essential role in pancreatic tissue organization. Their absence or disorganization leads to pancreatic duct abnormalities, acinar cell loss, polarity defects, and dysregulated insulin secretion. Cilia in pancreatic tissues are hubs for cellular signaling. Many signaling components, such as Hh, Notch, and Wnt, localize to pancreatic primary cilia and are necessary for proper development of pancreatic epithelium and β-cell morphogenesis. Receptors for neuroendocrine hormones, such as Somatostatin Receptor 3, also localize to the cilium and may play a more direct role in controlling insulin secretion due to somatostatin's inhibitory function. Finally, unique calcium signaling, which is at the heart of β-cell function, also occurs in primary cilia. Whereas voltage-gated calcium channels trigger insulin secretion and serve a variety of homeostatic functions in β-cells, transient receptor potential channels regulate calcium levels within the cilium that may serve as a feedback mechanism, regulating insulin secretion. This review article summarizes our current understanding of the role of primary cilia in normal pancreas function and in the diseased state. Birth Defects Research (Part C), 2014. © 2014 Wiley Periodicals, Inc.
    Birth Defects Research Part C Embryo Today Reviews 06/2014; 102(2). DOI:10.1002/bdrc.21064 · 3.87 Impact Factor


Available from