DNP by Thermal Mixing under Optimized Conditions Yields > 60 000-fold Enhancement of Y-89 NMR Signal

Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA.
Journal of the American Chemical Society (Impact Factor: 11.44). 06/2011; 133(22):8673-80. DOI: 10.1021/ja201880y
Source: PubMed

ABSTRACT Hyperpolarized (89)Y complexes are attractive NMR spectroscopy and MR imaging probes due to the exceptionally long spin-lattice relaxation time (T(1) ≈ 10 min) of the (89)Y nucleus. However, in vivo imaging of (89)Y has not yet been realized because of the low NMR signal enhancement levels previously achieved for this ultra low-γ(n) nucleus. Here, we report liquid-state (89)Y NMR signal enhancements over 60,000 times the thermal signal at 298 K in a 9.4 T magnet, achieved after the dynamic nuclear polarization (DNP) of Y(III) complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) samples at 3.35 T and 1.4 K. The (89)Y DNP was shown to proceed by thermal mixing and the liquid state (89)Y NMR signal enhancement was maximized by (i) establishing the optimal microwave irradiation frequency, (ii) optimizing the glassing matrix, (iii) choosing a radical with negligible inhomogeneous line broadening contribution to the ESR linewidth, and (iv) addition of an electron T(1e) relaxation agent. The highest enhancements were achieved using a trityl OX063 radical combined with a gadolinium relaxation agent in water-glycerol matrix. Co-polarization of (89)YDOTA and sodium [1-(13)C]pyruvate showed that both (89)Y and (13)C nuclear species acquired the same spin temperature, consistent with thermal mixing theory of DNP. This methodology may be applicable for the optimization of DNP of other low-γ(n) nuclei.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Applications of NMR for metabolomics and metabolic profiling continue to grow rapidly as does the refinement of methods for the measurement, analysis and interpretation of complex data sets. Metabolomics (metabonomics) is a set of global measurements performed on biological samples with the goal of quantifying as many metabolites as possible and evaluating changes in metabolite levels as a result of an applied stress. Metabolic profiling experiments follow a more limited set of metabolites often through specific pathways. NMR is also well suited for metabolite fingerprinting, which involves the comprehensive and simultaneous analysis of a wide variety of compounds. For the purpose of this Review, we do not distinguish between metabolomics and metabonomics, and have elected to use the term metabolomics throughout. Figure 1 illustrates the rapid growth in publications on topics that include the keywords NMR and metabolomics/metabonomics since the year 2000. Due to space limitations, this Review covers only papers published between 2011 and the first half of 2014.
    Analytical Chemistry 11/2014; 87(1). DOI:10.1021/ac504075g · 5.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: PurposeThe diseased myocardium lacks metabolic flexibility and responds to stimuli differently compared with healthy hearts. Here, we report the use of hyperpolarized 13C NMR spectroscopy to detect sudden changes in cardiac metabolism in isolated, perfused rat hearts in response to adrenergic stimulation.Methods Metabolism of hyperpolarized [1-13C]pyruvate was investigated in perfused rat hearts. The hearts were stimulated in situ by isoproterenol shortly after the administration of hyperpolarized [1-13C]pyruvate. The hyperpolarized 13C NMR results were corroborated with 1H NMR spectroscopy of tissue extracts.ResultsAddition of isoproterenol to hearts after equilibration of hyperpolarized [1-13C]pyruvate into the existing lactate pool resulted in a sudden, rapid increase in hyperpolarized [1-13C]lactate signal within seconds after exposure to drug. The hyperpolarized H13CO3− and hyperpolarized [1-13C]alanine signals were not affected by the isoproterenol-induced elevated cardiac workload. Separate experiments confirmed that the new hyperpolarized [1-13C]lactate signal that arises after stimulation by isoproterenol reflects a sudden increase in total tissue lactate derived from glycogen.Conclusion These results suggest that hyperpolarized pyruvate and 13C MRS may be useful for detecting abnormal glycogen metabolism in intact tissues. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
    Magnetic Resonance in Medicine 08/2014; DOI:10.1002/mrm.25419 · 3.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We sought to build a dynamic nuclear polarization system for operation at 4.6 T (129 GHz) and evaluate its efficiency in terms of (13)C polarization levels using free radicals that span a range of ESR linewidths.
    MAGMA Magnetic Resonance Materials in Physics Biology and Medicine 08/2014; DOI:10.1007/s10334-014-0455-2 · 1.35 Impact Factor

Full-text (2 Sources)

Available from
May 29, 2014