Article

Antineoplastic effects of simvastatin in experimental breast cancer.

Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovak Republic.
Klinická onkologie: casopis Ceské a Slovenské onkologické spolecnosti 01/2011; 24(1):41-5.
Source: PubMed

ABSTRACT Statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) have proven therapeutic and preventive effects on cardiovascular diseases. Preclinical evidence demonstrates tumor-suppressive effects of statins in several human neoplasias, including breast cancer.
In this study, antineoplastic effects of simvastatin in chemoprevention of N-methyl-N-nitrosourea-induced mammary carcinogenesis in female rats were evaluated. The drug was dietary administered at two concentrations--18 mg/kg (SIMVA 18) and 180 mg/kg (SIMVA 180).
Basic parameters of experimental carcinogenesis after long-term simvastatin treatment in animals were assessed. In the SIMVA 180 group, simvastatin significantly suppressed tumour frequency by 80.5% and tumour incidence by 58.5% in comparison to the controls. Higher dose simvastatin non-significantly decreased the mean tumor volume by 23.5%, as well as non-significantly lengthened the latency period by 14.5 days compared to the control animals. Simvastatin, administered at a lower dose did not change parameters of mammary carcinogenesis in comparison to the control group. Simvastatin in both treated groups significantly decreased serum levels of triacylglycerols and VLDL-cholesterol in comparison to the control animals. Compared to the controls, a significant increase in food intake by the animals was recorded in the SIMVA 18 and SIMVA 180 groups. No significant differences in the final body weight gain between the simvastatin-administered and the control group were found.
This study represents the first report of simvastatin use in experimental mammary carcinogenesis in vivo.

0 Bookmarks
 · 
99 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have suggested that statins, an established drug group in the prevention of cardiovascular mortality, could delay or prevent breast cancer recurrence but the effect on disease-specific mortality remains unclear. We evaluated risk of breast cancer death among statin users in a population-based cohort of breast cancer patients. The study cohort included all newly diagnosed breast cancer patients in Finland during 1995-2003 (31,236 cases), identified from the Finnish Cancer Registry. Information on statin use before and after the diagnosis was obtained from a national prescription database. We used the Cox proportional hazards regression method to estimate mortality among statin users with statin use as time-dependent variable. A total of 4,151 participants had used statins. During the median follow-up of 3.25 years after the diagnosis (range 0.08-9.0 years) 6,011 participants died, of which 3,619 (60.2%) was due to breast cancer. After adjustment for age, tumor characteristics, and treatment selection, both post-diagnostic and pre-diagnostic statin use were associated with lowered risk of breast cancer death (HR 0.46, 95% CI 0.38-0.55 and HR 0.54, 95% CI 0.44-0.67, respectively). The risk decrease by post-diagnostic statin use was likely affected by healthy adherer bias; that is, the greater likelihood of dying cancer patients to discontinue statin use as the association was not clearly dose-dependent and observed already at low-dose/short-term use. The dose- and time-dependence of the survival benefit among pre-diagnostic statin users suggests a possible causal effect that should be evaluated further in a clinical trial testing statins' effect on survival in breast cancer patients.
    PLoS ONE 10/2014; 9(10):e110231. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Simvastatin, a competitive inhibitor of HMG-CoA reductase widely used in the treatment and prevention of hyperlipidemia-related diseases, has recently been associated to in vitro anticancer stem cell (CSC) actions. However, these effects have not been confirmed in vivo. To assess in vivo anti-CSC effects of simvastatin, female Sprague-Dawley rats with 7,12-dimethyl-benz(a)anthracene (DMBA)-induced mammary cancer and control animals were treated for 14 days with either simvastatin (20 or 40 mg/kg/day) or soybean oil (N = 60). Tumors and normal breast tissues were removed for pathologic examination and immunodetection of CSC markers. At 40 mg/kg/day, simvastatin significantly reduced tumor growth and the expression of most CSC markers. The reduction in tumor growth (80%) could not be explained solely by the decrease in CSCs, since the latter accounted for less than 10% of the neoplasia (differentiated cancer cells were also affected). Stem cells in normal, nonneoplastic breast tissues were not affected by simvastatin. Simvastatin was also associated with a significant decrease in proliferative activity but no increase in cell death. In conclusion, this is the first study to confirm simvastatin anti-CSC actions in vivo, further demonstrating that this effect is specific for neoplastic cells, but not restricted to CSCs, and most likely due to inhibition of cell proliferation.
    Toxicologic Pathology 10/2014; · 1.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein geranylgeranylation (GGylation) is an important biochemical process for many cellular signaling molecules. Previous studies have shown that GGylation is essential for cell survival in many types of cancer. However, the molecular mechanism mediating the cell survival effect remains elusive. In this report, we show that the Hippo pathway mediates GGylation-dependent cell proliferation and migration in breast cancer cells. Blockade of GGylation enhanced phosphorylation of Mst1/2 and Lats1, and inhibited YAP and TAZ activity and the Hippo-YAP/TAZ pathway-dependent transcription. The effect of GGylation blockade on inhibition of breast cancer cell proliferation and migration is dependent on the Hippo-YAP/TAZ signaling, in which YAP appears to regulate cell proliferation and TAZ to regulate cell migration. Furthermore, GGylation-dependent cell proliferation is correlated with the activity of YAP/TAZ in breast cancer cells. Finally, Gγ and RhoA are the GGylated proteins that may transduce GGylation signals to the Hippo-YAP/TAZ pathway. Taken together, our studies have demonstrated that the Hippo-YAP/TAZ pathway is essential for GGylation-dependent cancer cell proliferation and migration.Oncogene advance online publication, 11 August 2014; doi:10.1038/onc.2014.251.
    Oncogene 08/2014; · 8.56 Impact Factor

Full-text

Download
43 Downloads
Available from
Jun 3, 2014