Article

Characterization of human ovarian teratoma hair by using AFM, FT-IR, and Raman spectroscopy.

Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Korea.
Microscopy Research and Technique (Impact Factor: 1.59). 04/2011; 74(12):1121-6. DOI: 10.1002/jemt.21003
Source: PubMed

ABSTRACT The structural, physical, and chemical properties of hair taken from an ovarian teratoma (teratoma hair) was first examined by atomic force microscopy (AFM), Fourier transform infrared (FT-IR), and Raman spectroscopy. The similarities and differences between the teratoma hair and scalp hair were also investigated. Teratoma hair showed a similar morphology and chemical composition to scalp hair. Teratoma hair was covered with a cuticle in the same manner as scalp hair and showed the same amide bonding modes as scalp hair according to FT-IR and Raman spectroscopy. On the other hand, teratoma hair showed different physical properties and cysteic acid bands from scalp hair: the surface was rougher and the adhesive force was lower than the scalp hair. The cystine oxides modes did not change with the position unlike scalp hair. These differences can be understood by environmental effects not by the intrinsic properties of the teratoma hair.

0 Bookmarks
 · 
78 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fourier-transform Raman microscopic spectra of normal, untreated and bleached hair fibres are presented. Vibrational assignments are made and differences are ascribed to the production of cysteic acid from cysteine. Changes in conformation associated with the disulphide bond in the keratotic component are noted from the v(CSSC) vibrational modes at wave numbers near 500 cm-1. Raman spectra of hair root ends have also been investigated with a diminution in cysteine content being observed. Application of the technique to the biomedical investigation of healthy and diseased hair is proposed.
    Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy 08/1997; 53A(7):1021-31. · 1.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to investigate the reduction mechanism of L-cysteine (Cys) on keratin fibers, cross-sectional samples of virgin white human hair treated with Cys were prepared. The heterogeneous reaction between Cys and keratin fibers involving the diffusion of Cys into human hair was analyzed at the molecular level using microspectrophotometry and Raman spectroscopy. The diffusion pattern of Cys into human hair showed non-Fickian type characteristics, thus indicating the free amino groups of electrostatically interacted with the anionic ions of the fiber surface. The disconnected relative concentration of -SS- groups at various depths of the hair samples with pH 9.0 was less than the Cys relative concentration, indicating that the reaction rate (the disconnection of -SS- groups) was slower than the diffusion rate of Cys into human hair. From these experiments, we concluded that the free amino groups of Cys electrostatically interacted with the anionic ions of the fiber surface, thereby decreasing the reaction rate (the disconnection of -SS- groups) of Cys at pH 9.0.
    Biopolymers 01/2006; 79(6):324-34. · 2.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The atomic force microscope (AFM) was used to investigate the surface architecture of the entire lengths of cleaned human head hairs. Many features previously seen with the scanning electron microscope (SEM) were identified. However, the AFM has provided much greater detail and, in particular, the hair's cuticular surfaces appear not to be as smooth as had been previously supposed. A consistent feature was of step discontinuities or "ghosts" on the scale surfaces. These delineated the original location of each overlying scale before its edge had been chipped away. There was a change in the longitudinal angular presentation of the surfaces about each ghost. This means the distal ends of each cuticle cell have been synthesised in the follicle to be thicker than where that same cuticle cell is bounded on both sides by other cuticle cells. The undamaged outer cuticular surfaces at the root end of each hair were covered everywhere by longitudinal ridges (striations). Where the hair surface was worn, the striations terminated at a scale edge ghost. The ridges were approximately 9 nm high and were in parallel array with a lateral repeat spacing of about 350 nm. The striations are evidently formed on the outer surface of each cuticle cell following earlier contact in the hair follicle with the inner root sheath. The study of stained transverse sections of hairs in the transmission electron microscope (TEM) is suggested as a means for throwing some light on the underlying structure and chemistry of the striations. Finally, our AFM studies have revealed that the surface of the freshly emergent hair gradually changes over a distance of about 20 mm and that the surface of the hair for most of its length is quite different from that near the root. This is likely to be of import to those engaged in the hair toiletries industry.
    Scanning 01/2006; 22(5):310-8. · 1.29 Impact Factor