Genetic toxicology in the 21st century: Reflections and future directions

Merck Research Laboratories, Genetic Toxicology, Mechanistic and Predictive Toxicology, Summit, New Jersey, USA.
Environmental and Molecular Mutagenesis (Impact Factor: 2.55). 06/2011; 52(5):339-54. DOI: 10.1002/em.20653
Source: PubMed

ABSTRACT A symposium at the 40th anniversary of the Environmental Mutagen Society, held from October 24-28, 2009 in St. Louis, MO, surveyed the current status and future directions of genetic toxicology. This article summarizes the presentations and provides a perspective on the future. An abbreviated history is presented, highlighting the current standard battery of genotoxicity assays and persistent challenges. Application of computational toxicology to safety testing within a regulatory setting is discussed as a means for reducing the need for animal testing and human clinical trials, and current approaches and applications of in silico genotoxicity screening approaches across the pharmaceutical industry were surveyed and are reported here. The expanded use of toxicogenomics to illuminate mechanisms and bridge genotoxicity and carcinogenicity, and new public efforts to use high-throughput screening technologies to address lack of toxicity evaluation for the backlog of thousands of industrial chemicals in the environment are detailed. The Tox21 project involves coordinated efforts of four U.S. Government regulatory/research entities to use new and innovative assays to characterize key steps in toxicity pathways, including genotoxic and nongenotoxic mechanisms for carcinogenesis. Progress to date, highlighting preliminary test results from the National Toxicology Program is summarized. Finally, an overview is presented of ToxCast™, a related research program of the U.S. Environmental Protection Agency, using a broad array of high throughput and high content technologies for toxicity profiling of environmental chemicals, and computational toxicology modeling. Progress and challenges, including the pressing need to incorporate metabolic activation capability, are summarized.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Characterizing variability in the extent and nature of responses to environmental exposures is a critical aspect of human health risk assessment. Chemical toxicants act by many different mechanisms, however, and the genes involved in adverse outcome pathways (AOPs) and AOP networks are not yet characterized. Functional genomic approaches can reveal both toxicity pathways and susceptibility genes, through knockdown or knockout of all non-essential genes in a cell of interest, and identification of genes associated with a toxicity phenotype following toxicant exposure. Screening approaches in yeast and human near-haploid leukemic KBM7 cells, have identified roles for genes and pathways involved in response to many toxicants but are limited by partial homology among yeast and human genes and limited relevance to normal diploid cells. RNA interference (RNAi) suppresses mRNA expression level but is limited by off-target effects (OTEs) and incomplete knockdown. The recently developed gene editing approach called clustered regularly interspaced short palindrome repeats-associated nuclease (CRISPR)-Cas9, can precisely knock-out most regions of the genome at the DNA level with fewer OTEs than RNAi, in multiple human cell types, thus overcoming the limitations of the other approaches. It has been used to identify genes involved in the response to chemical and microbial toxicants in several human cell types and could readily be extended to the systematic screening of large numbers of environmental chemicals. CRISPR-Cas9 can also repress and activate gene expression, including that of non-coding RNA, with near-saturation, thus offering the potential to more fully characterize AOPs and AOP networks. Finally, CRISPR-Cas9 can generate complex animal models in which to conduct preclinical toxicity testing at the level of individual genotypes or haplotypes. Therefore, CRISPR-Cas9 is a powerful and flexible functional genomic screening approach that can be harnessed to provide unprecedented mechanistic insight in the field of modern toxicology.
    Mutation Research/Reviews in Mutation Research 01/2015; DOI:10.1016/j.mrrev.2015.01.002 · 7.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To establish a relevant in vitro model for systems toxicology-based mechanistic assessment of environmental stressors such as cigarette smoke (CS), we exposed human organotypic bronchial epithelial tissue cultures at the air liquid interface (ALI) to various CS doses. Previously, we compared in vitro gene expression changes with published human airway epithelia in vivo data to assess their similarities. Here, we present a follow-up evaluation of these in vitro transcriptomics data, using complementary computational approaches and an integrated mRNA-microRNA (miRNA) analysis. The main cellular pathways perturbed by CS exposure were related to stress responses (oxidative stress and xenobiotic metabolism), inflammation (inhibition of nuclear factor-κB and the interferon gamma-dependent pathway), and proliferation/differentiation. Within post-exposure periods up to 48 hours, a transient kinetic response was observed at lower CS doses, whereas higher doses resulted in more sustained responses. In conclusion, this systems toxicology approach has potential for product testing according to "21st Century Toxicology".
    Bioinformatics and biology insights 03/2015; 9:19-35. DOI:10.4137/BBI.S19908
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study reports a comparative and mechanistic genotoxicity assessment of four engineered nanomaterials (ENMs) across three species, including E. coli, yeast, and human cells, with the aim to reveal the distinct potential genotoxicity mechanisms among the different nanomaterials and their association with physiochemical features. Both the conventional phenotypic alkaline comet test and the newly developed quantitative toxicogenomics assay, that detects and quantifies molecular level changes in the regulation of six DNA damage repair pathways, were employed. The proposed molecular endpoints derived from the toxicogenomics assays, namely TELI (Transcriptional Effect Level Index) and PELI (Protein Effect Level Index), correlated well with the phenotypic DNA damage endpoints from comet tests, suggesting that the molecular genotoxicity assay is suitable for genotoxicity detection. Temporal altered gene or protein expression profiles revealed various potential DNA damage types and relevant genotoxic mechanisms induced by the tested ENMs. nTiO2_a induced a wide spectrum of DNA damage consistently across three species. Three carbon-based ENMs, namely carbon black, single wall carbon nanotube (SWCNT) and fullerene, exhibited distinct, species and ENM property-dependent DNA damage mechanisms. All carbon based ENMs induced relatively weak DNA damage repair response in E. coli, but more severe DNA double strand break in eukaryotes. The differences in cellular structure and defense systems among prokaryotic and eukaryotic species lead to distinct susceptibility and mechanisms for ENM uptake and, thus, varying DNA damages and repair responses. The observation suggested that eukaryotes, especially mammalian cells, are likely more susceptible to genotoxicity than prokaryotes in the ecosystem when exposed to these ENMs.
    Environmental Science and Technology 10/2014; 48(21). DOI:10.1021/es503065q · 5.48 Impact Factor

Full-text (2 Sources)

Available from
Jun 2, 2014