De novo assembly and validation of planaria transcriptome by massive parallel sequencing and shotgun proteomics.

Max-Delbrück-Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Robert Rössle Strasse 10, Berlin, Germany.
Genome Research (Impact Factor: 14.4). 05/2011; 21(7):1193-200. DOI: 10.1101/gr.113779.110
Source: PubMed

ABSTRACT Freshwater planaria are a very attractive model system for stem cell biology, tissue homeostasis, and regeneration. The genome of the planarian Schmidtea mediterranea has recently been sequenced and is estimated to contain >20,000 protein-encoding genes. However, the characterization of its transcriptome is far from complete. Furthermore, not a single proteome of the entire phylum has been assayed on a genome-wide level. We devised an efficient sequencing strategy that allowed us to de novo assemble a major fraction of the S. mediterranea transcriptome. We then used independent assays and massive shotgun proteomics to validate the authenticity of transcripts. In total, our de novo assembly yielded 18,619 candidate transcripts with a mean length of 1118 nt after filtering. A total of 17,564 candidate transcripts could be mapped to 15,284 distinct loci on the current genome reference sequence. RACE confirmed complete or almost complete 5' and 3' ends for 22/24 transcripts. The frequencies of frame shifts, fusion, and fission events in the assembled transcripts were computationally estimated to be 4.2%-13%, 0%-3.7%, and 2.6%, respectively. Our shotgun proteomics produced 16,135 distinct peptides that validated 4200 transcripts (FDR ≤1%). The catalog of transcripts assembled in this study, together with the identified peptides, dramatically expands and refines planarian gene annotation, demonstrated by validation of several previously unknown transcripts with stem cell-dependent expression patterns. In addition, our robust transcriptome characterization pipeline could be applied to other organisms without genome assembly. All of our data, including homology annotation, are freely available at SmedGD, the S. mediterranea genome database.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Planarian flatworms regenerate every organ after amputation. Adult pluripotent stem cells drive this ability, but how injury activates and directs stem cells into the appropriate lineages is unclear. Here we describe a single-organ regeneration assay in which ejection of the planarian pharynx is selectively induced by brief exposure of animals to sodium azide. To identify genes required for pharynx regeneration, we performed an RNAi screen of 356 genes upregulated after amputation, using successful feeding as a proxy for regeneration. We found that knockdown of 20 genes caused a wide range of regeneration phenotypes and that RNAi of the forkhead transcription factor FoxA, which is expressed in a subpopulation of stem cells, specifically inhibited regrowth of the pharynx. Selective amputation of the pharynx therefore permits the identification of genes required for organ-specific regeneration and suggests an ancient function for FoxA-dependent transcriptional programs in driving regeneration. DOI:
    eLife Sciences 01/2014; 3:e02238.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The flatworm Schmidtea mediterranea is an emerging model species in fields such as stem cell biology, regeneration and evolutionary biology. Excellent molecular tools have been developed for S. mediterranea, but ultrastructural techniques have received far less attention. Processing specimens for histology and transmission electron microscopy (TEM) is notoriously idiosyncratic for particular species or specimen types. Unfortunately, however, most methods for S. mediterranea described in the literature lack numerous essential details, and those few that do provide them rely on specialized equipment that may not be readily available. Here we present an optimized protocol for ultrastructural preparation of S. mediterranea. The protocol can be completed in 6 d, much of which is 'hands-off' time. To aid with troubleshooting, we also illustrate the major effects of seemingly minor variations in fixative, buffer concentration and dehydration steps. This procedure will be useful for all planarian researchers, particularly those with relatively little experience in tissue processing.
    Nature Protocol 03/2014; 9(3):661-73. · 8.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding in vivo regeneration of complex structures offers a fascinating perspective for translation into medical applications. Unfortunately, mammals in general lack large-scale regenerative capacity, whereas planarians, newts or Hydra can regenerate complete body parts. Such organisms are, however, poorly annotated because of the lack of sequence information. This leads to limited access for molecular biological investigations. In the last decade, high throughput technologies and new methods enabling the effective generation of transgenic animals have rapidly evolved. These developments have allowed the extensive use of niche model organisms as part of a trend towards the accessibility of a greater panel of model species for scientific research. The case study that follows provides an insight into the impact of high throughput techniques on the landscape of models of regeneration. The cases presented here give evidence of alternative stem cell maintenance pathways, the identification of new protein families and new stem cell markers.
    BioEssays 04/2014; 36(4):407-18. · 5.42 Impact Factor


Available from
Jun 4, 2014