Article

De novo assembly and validation of planaria transcriptome by massive parallel sequencing and shotgun proteomics.

Max-Delbrück-Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Robert Rössle Strasse 10, Berlin, Germany.
Genome Research (Impact Factor: 13.85). 05/2011; 21(7):1193-200. DOI: 10.1101/gr.113779.110
Source: PubMed

ABSTRACT Freshwater planaria are a very attractive model system for stem cell biology, tissue homeostasis, and regeneration. The genome of the planarian Schmidtea mediterranea has recently been sequenced and is estimated to contain >20,000 protein-encoding genes. However, the characterization of its transcriptome is far from complete. Furthermore, not a single proteome of the entire phylum has been assayed on a genome-wide level. We devised an efficient sequencing strategy that allowed us to de novo assemble a major fraction of the S. mediterranea transcriptome. We then used independent assays and massive shotgun proteomics to validate the authenticity of transcripts. In total, our de novo assembly yielded 18,619 candidate transcripts with a mean length of 1118 nt after filtering. A total of 17,564 candidate transcripts could be mapped to 15,284 distinct loci on the current genome reference sequence. RACE confirmed complete or almost complete 5' and 3' ends for 22/24 transcripts. The frequencies of frame shifts, fusion, and fission events in the assembled transcripts were computationally estimated to be 4.2%-13%, 0%-3.7%, and 2.6%, respectively. Our shotgun proteomics produced 16,135 distinct peptides that validated 4200 transcripts (FDR ≤1%). The catalog of transcripts assembled in this study, together with the identified peptides, dramatically expands and refines planarian gene annotation, demonstrated by validation of several previously unknown transcripts with stem cell-dependent expression patterns. In addition, our robust transcriptome characterization pipeline could be applied to other organisms without genome assembly. All of our data, including homology annotation, are freely available at SmedGD, the S. mediterranea genome database.

0 Bookmarks
 · 
274 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-throughput transcriptome sequencing (RNA-seq) technology promises to discover novel protein-coding and non-coding transcripts, particularly the identification of long non-coding RNAs (lncRNAs) from de novo sequencing data. This requires tools that are not restricted by prior gene annotations, genomic sequences and high-quality sequencing.
    BMC Bioinformatics 09/2014; 15(1):311. DOI:10.1186/1471-2105-15-311 · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Members of the COE family of transcription factors are required for central nervous system (CNS) development. However, the function of COE in the post-embryonic CNS remains largely unknown. An excellent model for investigating gene function in the adult CNS is the freshwater planarian. This animal is capable of regenerating neurons from an adult pluripotent stem cell population and regaining normal function. We previously showed that planarian coe is expressed in differentiating and mature neurons and that its function is required for proper CNS regeneration. Here, we show that coe is essential to maintain nervous system architecture and patterning in intact (uninjured) planarians. We took advantage of the robust phenotype in intact animals to investigate the genetic programs coe regulates in the CNS. We compared the transcriptional profiles of control and coe RNAi planarians using RNA sequencing and identified approximately 900 differentially expressed genes in coe knockdown animals, including 397 downregulated genes that were enriched for nervous system functional annotations. Next, we validated a subset of the downregulated transcripts by analyzing their expression in coe-deficient planarians and testing if the mRNAs could be detected in coe+ cells. These experiments revealed novel candidate targets of coe in the CNS such as ion channel, neuropeptide, and neurotransmitter genes. Finally, to determine if loss of any of the validated transcripts underscores the coe knockdown phenotype, we knocked down their expression by RNAi and uncovered a set of coe-regulated genes implicated in CNS regeneration and patterning, including orthologs of sodium channel alpha-subunit and pou4. Our study broadens the knowledge of gene expression programs regulated by COE that are required for maintenance of neural subtypes and nervous system architecture in adult animals.
    PLoS Genetics 10/2014; 10(10):e1004746. DOI:10.1371/journal.pgen.1004746 · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The most recent phylogenomic study suggested that Bryozoa (Ectoprocta), Brachiopoda, and Phoronida are monophyletic, implying that the lophophore of bryozoans, phoronids and brachiopods is a synapomorphy. Understanding the molecular mechanisms of the lophophore development of the Lophophorata clade can therefore provide us a new insight into the formation of the diverse morphological traits in metazoans. In the present study, we profiled the transcriptome of the Bryozoan (Ectoproct) Bugula neritina during the swimming larval stage (SW) and the early (4 h) and late (24 h) metamorphic stages using the Illumina HiSeq2000 platform. Various genes that function in development, the immune response and neurogenesis showed differential expression levels during metamorphosis. In situ hybridization of 23 genes that participate in the Wnt, BMP, Notch, and Hedgehog signaling pathways revealed their regulatory roles in the development of the lophophore and the ancestrula digestive tract. Our findings support the hypothesis that developmental precursors of the lophophore and the ancestrula digestive tract are pre-patterned by the differential expression of key developmental genes according to their fate. This study provides a foundation to better understand the developmental divergence and/or convergence among developmental precursors of the lophophore of bryozoans, branchiopods and phoronids.

Full-text

Download
81 Downloads
Available from
Jun 4, 2014