The Ras signaling inhibitor LOX-PP interacts with Hsp70 and c-Raf to reduce Erk activation and transformed phenotype of breast cancer cells.

Department of Biochemistry, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA.
Molecular and Cellular Biology (Impact Factor: 5.04). 07/2011; 31(13):2683-95. DOI: 10.1128/MCB.01148-10
Source: PubMed

ABSTRACT The lysyl oxidase gene (LOX) inhibits Ras signaling in transformed fibroblasts and breast cancer cells. Its activity was mapped to the 162-amino-acid propeptide domain (LOX-PP) of the lysyl oxidase precursor protein. LOX-PP inhibits Erk signaling, motility, and tumor formation in a breast cancer xenograft model; however, its mechanism of action is largely unknown. Here, a copurification-mass spectrometry approach was taken using ectopically expressed LOX-PP in HEK293T cells and the heat shock/chaperone protein Hsp70 identified. Hsp70 interaction with LOX-PP was confirmed using coimmunoprecipitation of intracellularly and bacterially expressed and endogenous proteins. The interaction was mapped to the Hsp70 peptide-binding domain and to LOX-PP amino acids 26 to 100. LOX-PP association reduced Hsp70 chaperone activities of protein refolding and survival after heat shock. LOX-PP interacted with the Hsp70 chaperoned protein c-Raf. With the use of ectopic expression of LOX-PP wild-type and deletion proteins, small interfering RNA (siRNA) knockdown, and Lox(-/-) mouse embryo fibroblasts, LOX-PP interaction with c-Raf was shown to decrease downstream activation of MEK and NF-κB, migration, and anchorage-independent growth and reduce its mitochondrial localization. Thus, the interaction of LOX-PP with Hsp70 and c-Raf inhibits a critical intermediate in Ras-induced MEK signaling and plays an important role in the function of this tumor suppressor.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lysyl oxidase (LOX) is a multifunctional protein required for normal collagen and elastin biosynthesis and maturation. In addition, LOX has complex roles in cancer in which the lysyl oxidase propeptide (LOX-PP) domain of secreted pro-LOX has tumor-suppressor activity, while the active enzyme promotes metastasis. In prostate cancer cell lines, recombinant LOX-PP (rLOX-PP) inhibits the growth of PC3 cells in vitro by mechanisms that were not characterized, while in DU145 cells rLOX-PP targeted fibroblast growth factor signaling. Because rLOX-PP can enhance effects of a genotoxic chemotherapeutic on breast cancer cell apoptosis, we reasoned that rLOX-PP could target DNA repair pathways typically elevated in cancer. Here we demonstrate for the first time that rLOX-PP inhibits prostate xenograft growth in vivo and that activating phosphorylations of the key DNA repair molecules ataxia-telangiectasia mutated (ATM) and checkpoint kinase 2 (CHK2) are inhibited by rLOX-PP expression in vivo. In addition, in vitro studies showed that rLOX-PP inhibits radiation-induced activating phosphorylations of ATM and CHK2 and that exogenously added rLOX-PP protein can localize to the nucleus in both DU145 and PC3 cells. rLOX-PP pull-down studies resulted in detection of a protein complex with the nuclear DNA repair regulator MRE11 in both cell lines, and rLOX-PP localized to radiation-induced nuclear DNA repair foci. Finally, rLOX-PP was shown to sensitize both DU145 and PC3 cells to radiation-induced cell death determined in colony-formation assays. These data provide evidence that rLOX-PP has a nuclear mechanism of action in which it directly interacts with DNA repair proteins to sensitize prostate cancer cells to the effects of ionizing radiation.Oncogene advance online publication, 2 June 2014; doi:10.1038/onc.2014.147.
    Oncogene 06/2014; · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Copper amine oxidases (CAOs) are a class of enzymes that contain Cu(2+) and a tyrosine-derived quinone cofactor, catalyze the conversion of a primary amine functional group to an aldehyde, and generate hydrogen peroxide and ammonia as byproducts. These enzymes can be classified into two non-homologous families: 2,4,5-trihydroxyphenylalanine quinone (TPQ)-dependent CAOs and the lysine tyrosylquinone (LTQ)-dependent lysyl oxidase (LOX) family of proteins. In this review, we will focus on recent developments in the field of research concerning human CAOs and the LOX family of proteins. The aberrant expression of these enzymes is linked to inflammation, fibrosis, tumor metastasis/invasion and other diseases. Consequently, there is a critical need to understand the functions of these proteins at the molecular level, so that strategies targeting these enzymes can be developed to combat human diseases.
    Archives of Biochemistry and Biophysics 01/2014; · 3.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lysyl oxidase gene inhibits Ras signaling in transformed fibroblasts and breast cancer cells. Its activity was mapped to the 162 amino acid propeptide domain (LOX-PP) of the lysyl oxidase precursor protein. LOX-PP inhibited the Her-2/Ras signaling axis in breast cancer cells, and reduced the Her-2-driven breast tumor burden in a xenograft model. Since its mechanism of action is largely unknown, co-affinity-purification/mass spectrometry was performed and the "Cbl-interacting protein of 85-kDa" (CIN85) identified as an associating protein. CIN85 is an SH3-containing adapter protein that is overexpressed in invasive breast cancers. The CIN85 SH3 domains interact with c-Cbl, an E3 ubiquitin ligase, via an unconventional PxxxPR ligand sequence, with the highest affinity displayed by the SH3-B domain. Interaction with CIN85 recruits c-Cbl to the AMAP1 complex where its ubiquitination activity is necessary for cancer cells to develop an invasive phenotype and to degrade the matrix. Direct interaction of LOX-PP with CIN85 was confirmed using co-immunoprecipitation analysis of lysates from breast cancer cells and of purified expressed proteins. CIN85 interaction with c-Cbl was reduced by LOX-PP. Domain specific CIN85 regions and deletion mutants of LOX-PP were prepared and used to map the sites of interaction to the SH3-B domain of CIN85 and to an epitope encompassing amino acids 111 to 116 of LOX-PP. Specific LOX-PP point mutant proteins P111A and R116A failed to interact with CIN85 or to compete for CIN85 binding with c-Cbl. Structural modeling identified a new atypical PxpxxRh SH3-binding motif in this region of LOX-PP. The LOX-PP interaction with CIN85 was shown to reduce the invasive phenotype of breast cancer cells, including their ability to degrade the surrounding extracellular matrix and for Matrigel outgrowth. Thus, LOX-PP interacts with CIN85 via a novel SH3-binding motif and this association reduces CIN85-promoted invasion by breast cancer cells.
    PLoS ONE 10/2013; 8(10):e77288. · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014