Article

Paracrine-mediated differentiation and activation of human haematopoietic osteoclast precursor cells by skin and gingival fibroblasts.

Laboratório de Farmacologia e Biocompatibilidade Celular, Faculdade de Medicina Dentária, Universidade do Porto, Porto, Portugal.
Cell Proliferation (Impact Factor: 2.27). 06/2011; 44(3):264-73. DOI: 10.1111/j.1365-2184.2011.00751.x
Source: PubMed

ABSTRACT Fibroblasts appear to modulate osteoclastogenesis, but their precise role in this process remains unclear. In this work, paracrine-mediated osteoclastogenic potential of different human fibroblasts was assessed.
Fibroblast-conditioned media (CM) from foetal skin (CM1), adult skin (CM2) and adult gingiva (CM3) were used to promote osteoclastogenesis of osteoclast precursor cells. Cultures supplemented with macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) were used as controls.
All fibroblast cultures expressed FSP-1, M-CSF and RANKL and produced osteoprotegerin (OPG); gingival fibroblasts presented lowest expression of osteoclastogenic genes and higher production of OPG. All fibroblast CM were able to induce osteoclastogenesis. CM1 showed behaviour similar to positive controls, and slightly higher osteoclastogenic potential than CM, from adult ones. Gingival fibroblasts revealed lowest osteoclastogenic ability. Presence of anti-MCSF or anti-RANKL partially inhibited osteoclastogenesis promoted by CM, although the former antibody revealed higher inhibitory response. Differences among the osteoclastogenic effect of CM were noted, mainly in expression of genes involved in differentiation and activation of osteoclast precursor cells, c-myc and c-src, and less regarding functional related parameters.
Fibroblasts are able to induce osteoclastogenesis by paracrine mechanisms, and age and anatomical location affect this ability. Other factors produced by fibroblasts, in addition to M-CSF and RANKL, appear to contribute to observed osteoclastogenic potential.

0 Bookmarks
 · 
44 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peripheral blood is a large accessible source of adult stem cells for both basic research and clinical applications. Peripheral blood mononuclear cells (PBMCs) have been reported to contain a multitude of distinct multipotent progenitor cell populations and possess the potential to differentiate into blood cells, endothelial cells, hepatocytes, cardiomyogenic cells, smooth muscle cells, osteoblasts, osteoclasts, epithelial cells, neural cells, or myofibroblasts under appropriate conditions. Furthermore, transplantation of these PBMC-derived cells can regenerate tissues and restore function after injury. This mini-review summarizes the multi-differentiation potential of PBMCs reported in the past years, discusses the possible mechanisms for this multi-differentiation potential, and describes recent techniques for efficient PBMC isolation and purification.
    Stem Cell Research & Therapy 11/2012; 3(6):48. · 3.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin-34 (IL-34) is a recently discovered cytokine functionally overlapping macrophage colony stimulating factor (M-CSF), a mediator of inflammation and osteoclastogenesis in bone-degenerative diseases such as rheumatoid arthritis. The objective of this study was to assess the expression of IL-34 in human gingival fibroblasts and investigate if the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and Interleukin-1Β (IL-1β) modulate its expression, and moreover if IL-34 could contribute to recruitment of bone-resorbing osteoclasts. IL-34 expression was evaluated in gingival fibroblasts by real time PCR following stimulation by TNF-α, IL-1β, and treatment with inhibitors of intracellular pathways. The formation of osteoclasts was evaluated by tartrate-resistant acid phosphatase (TRAP) staining of bone marrow macrophages treated with IL-34 or M-CSF in addition to receptor activator of nuclear factor kappa-B ligand (RANKL). IL-34 was expressed in gingival fibroblasts. The expression was enhanced by TNF-α and IL-1β, regulated by the transcription factor nuclear factor kappa B (NF-κΒ) and activation of c-Jun N-terminal kinase (JNK). Further, IL-34 supports RANKL-induced osteoclastogensis of bone marrow macrophages, independently of M-CSF. In conclusion, this study shows for the first time IL-34 expression in human gingival fibroblasts, stimulated by TNF-α and IL-1β, key mediators of periodontal inflammation. Furthermore, IL-34 can be substituted for M-CSF in RANKL-induced osteoclastogenesis. IL-34 may contribute to inflammation and osteoclastogenesis in bone-degenerative diseases such as periodontitis.
    PLoS ONE 01/2013; 8(12):e81665. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gingiva of the oral mucosa provides a practical source to isolate fibroblasts for therapeutic purposes because the tissue is easily accessible, tissue discards are common during routine clinical procedures and wound healing after biopsy is fast and results in complete wound regeneration with very little morbidity or scarring. In addition, gingival fibroblasts have unique traits, including neural crest origin, distinct gene expression and synthetic properties and potent immunomodulatory functions. These characteristics may provide advantages for certain therapeutic approaches over other more commonly used cells, including skin fibroblasts, both in intraoral and extra-oral sites. However, identity and phenotype of gingival fibroblasts, like other fibroblasts, are still not completely understood. Gingival fibroblasts are phenotypically heterogeneous, and these…fibroblast subpopulations may play different roles in tissue maintenance, regeneration and pathologies. The purpose of this review is to summarize what is currently known about gingival fibroblasts, their distinct potential for tissue regeneration and their potential therapeutic uses in the future.
    Cytotherapy 06/2014; · 3.06 Impact Factor

Full-text

Download
14 Downloads
Available from
May 28, 2014