Article

Sequential interactions with Sec23 control the direction of vesicle traffic.

Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California at San Diego, La Jolla, California 92093-0668, USA.
Nature (Impact Factor: 42.35). 05/2011; 473(7346):181-6. DOI: 10.1038/nature09969
Source: PubMed

ABSTRACT How the directionality of vesicle traffic is achieved remains an important unanswered question in cell biology. The Sec23p/Sec24p coat complex sorts the fusion machinery (SNAREs) into vesicles as they bud from the endoplasmic reticulum (ER). Vesicle tethering to the Golgi begins when the tethering factor TRAPPI binds to Sec23p. Where the coat is released and how this event relates to membrane fusion is unknown. Here we use a yeast transport assay to demonstrate that an ER-derived vesicle retains its coat until it reaches the Golgi. A Golgi-associated kinase, Hrr25p (CK1δ orthologue), then phosphorylates the Sec23p/Sec24p complex. Coat phosphorylation and dephosphorylation are needed for vesicle fusion and budding, respectively. Additionally, we show that Sec23p interacts in a sequential manner with different binding partners, including TRAPPI and Hrr25p, to ensure the directionality of ER-Golgi traffic and prevent the back-fusion of a COPII vesicle with the ER. These events are conserved in mammalian cells.

Download full-text

Full-text

Available from: Majid Ghassemian, Jun 19, 2015
0 Followers
 · 
114 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intracellular membrane transport involves the well-coordinated engagement of a series of organelles and molecular machineries that ensure that proteins are delivered to their correct cellular locations according to their function. To maintain the homeostasis of the secretory system, the fluxes of membranes and protein across the transport compartments must be precisely balanced. This control should rely on a mechanism that senses the movement of the traffic and generates the required homeostatic response. Due to its central position in the secretory pathway and to the large amounts of signaling molecules associated with it, the Golgi complex represents the ideal candidate for this regulation. The generation of autonomous signaling by the Golgi complex in response to the arrival of cargo from the endoplasmic reticulum (ER) has been experimentally addressed only in recent years. These studies have revealed that cargo moving from the ER to the Golgi activates a series of signaling pathways, the functional significance of which appears to be to maintain the homeostasis of the Golgi complex and to activate Golgi trafficking according to internal demand. We have termed this regulatory mechanism the Golgi control system. A key player in this Golgi control system is the KDEL receptor, which has previously been shown to retrieve chaperones back to the endoplasmic reticulum and more recently to behave as a signaling receptor. Here, we discuss the particular role of KDEL receptor signaling in the regulation of important pathways involved in the maintenance of the homeostasis of the transport apparatus, and in particular, of the Golgi complex.
    Histochemie 07/2013; DOI:10.1007/s00418-013-1130-9 · 2.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Traffic from the ER to Golgi complex is initiated when the activated form of the GTPase Sar1p recruits the Sec23p/Sec24p complex to ER membranes. The Sec23p/Sec24p complex, which forms the inner shell of the COPII coat, sorts cargo into ER-derived vesicles. The coat inner shell recruits the Sec13p/Sec31p complex, leading to coat polymerization and vesicle budding. Recent studies have revealed that the Sec23p subunit sequentially interacts with three different binding partners to direct a COPII vesicle to the Golgi. One of these binding partners is the serine/threonine kinase Hrr25p. Hrr25p phosphorylates the COPII coat, driving the membrane-bound pool into the cytosol. The phosphorylated coat cannot rebind to the ER to initiate a new round of vesicle budding unless it is dephosphorylated. Here we screened all the known protein phosphatases in yeast to identify one whose loss of function alters the cellular distribution of COPII coat subunits. This screen identified the PP2A-like phosphatase Sit4p as a regulator of COPII coat dephosphorylation. Hyperphosphorylated coat subunits accumulate in the sit4Δ mutant in vivo. In vitro, Sit4p dephosphorylates COPII coat subunits. Consistent with a role in coat recycling, Sit4p and its mammalian ortholog, PP6, regulate traffic from the ER to the Golgi complex.
    Molecular biology of the cell 07/2013; DOI:10.1091/mbc.E13-02-0114 · 5.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review will focus on the conserved molecular mechanisms for the specific targeting of rhodopsin and rhodopsin-like sensory receptors to the primary cilia. We will discuss the molecular assemblies that control the movement of rhodopsin from the central sorting station of the cell, the trans-Golgi network (TGN), into membrane-enclosed rhodopsin transport carriers (RTCs), and their delivery to the primary cilia and the cilia-derived sensory organelle, the rod outer segment (ROS). Recent studies reveal that these processes are initiated by the synergistic interaction of rhodopsin with the active form of the G-protein Arf4 and the Arf GTPase activating protein (GAP) ASAP1. During rhodopsin progression, ASAP1 serves as an activation platform that brings together the proteins necessary for transport to the cilia, including the Rab11a-Rabin8-Rab8 complex involved in ciliogenesis. These specialized molecular assemblies, through successive action of discrete modules, cooperatively determine how rhodopsin and other rhodopsin-like signaling receptors gain access to primary cilia.
    Vision research 08/2012; 75. DOI:10.1016/j.visres.2012.07.015 · 2.38 Impact Factor