Calcineurin controls drug tolerance, hyphal growth, and virulence in Candida dubliniensis.

Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
Eukaryotic Cell (Impact Factor: 3.18). 06/2011; 10(6):803-19. DOI: 10.1128/EC.00310-10
Source: PubMed

ABSTRACT Candida dubliniensis is an emerging pathogenic yeast species closely related to Candida albicans and frequently found colonizing or infecting the oral cavities of HIV/AIDS patients. Drug resistance during C. dubliniensis infection is common and constitutes a significant therapeutic challenge. The calcineurin inhibitor FK506 exhibits synergistic fungicidal activity with azoles or echinocandins in the fungal pathogens C. albicans, Cryptococcus neoformans, and Aspergillus fumigatus. In this study, we show that calcineurin is required for cell wall integrity and wild-type tolerance of C. dubliniensis to azoles and echinocandins; hence, these drugs are candidates for combination therapy with calcineurin inhibitors. In contrast to C. albicans, in which the roles of calcineurin and Crz1 in hyphal growth are unclear, here we show that calcineurin and Crz1 play a clearly demonstrable role in hyphal growth in response to nutrient limitation in C. dubliniensis. We further demonstrate that thigmotropism is controlled by Crz1, but not calcineurin, in C. dubliniensis. Similar to C. albicans, C. dubliniensis calcineurin enhances survival in serum. C. dubliniensis calcineurin and crz1/crz1 mutants exhibit attenuated virulence in a murine systemic infection model, likely attributable to defects in cell wall integrity, hyphal growth, and serum survival. Furthermore, we show that C. dubliniensis calcineurin mutants are unable to establish murine ocular infection or form biofilms in a rat denture model. That calcineurin is required for drug tolerance and virulence makes fungus-specific calcineurin inhibitors attractive candidates for combination therapy with azoles or echinocandins against emerging C. dubliniensis infections.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: One hundred isolates of Aspergillus fumigatus sensu lato mainly from China, as well as from Australia, France, India, Indonesia, Ireland, UK, and USA were analyzed to infer their sequence types (STs) and population diversity based on partial calmodulin, calcineurin regulatory subunit B, beta-tubulin, cytochrome C and calcineurin catalytic subunit A genes as well as their mating types, using ClonalFrame, Structure and MEGA software. Our results inferred 48 STs and showed that most of the STs or lineages evolved independently and without clear population structure among them. Whereas one lineage was recognized that could be a true population and in which one clade might diverge into another distinct lineage, namely, a cryptic species, A. neoellipticus. In addition, we found that mutation, parasexual, and sexual recombination could, respectively, play specific roles in the evolution of these fungi. Our results also showed that MAT1-1/MAT1-2 mating type ratios of A. fumigatus sensu lato was biased to nearly 1:1.4 (20/28) when clone-corrected, but when not clone-corrected, the ratio of MAT1-1/MAT1-2 was so biased as near 1:2 (35/65), which might mean that isolates with MAT1-2 are in the process of losing sexual ability preceding those with MAT1-1.
    Mycopathologia 08/2014; 179(1-2). · 1.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple Vcx1 (vacuolar calcium exchanger) paralogues exist in many filamentous fungi but are functionally unexplored unlike a single Vcx1 ortholog well characterized in yeasts. Here we show that five Vcx1 paralogues (Vcx1A–E) in Beauveria bassiana are conditionally functional for intracellular Ca2+ homeostasis and contribute differentially to multistress tolerance and virulence in the filamentous entomopathogen. Each vcx1 deletion drastically upregulated transcriptional expressions of four other partners and six P-type Ca2+-ATPases, resulting in elevated or lowered intracellular Ca2+ concentration in some deletion mutants treated with Ca2+ stress or untreated at 25 and 30 °C. When calcineurin was inactivated by cyclosporine A, Ca2+ tolerance decreased by 11–17% in five Δvcx1 mutants, but Mn2+ sensitivity increased only in Δvcx1A and Δvcx1D, at optimal 25 °C. These two mutants were also more sensitive to Ca2+ stress at 30 °C when calcineurin was active, and showed minor growth defect at 25 and 30 °C when calcineurin was inactive. Moreover, all the Δvcx1 mutants were more sensitive to dithiothreitol (stress-response trigger to endoplasmic reticulum) and Congo red (cell wall stressor); three of them were consistently less tolerant to the oxidants menadione and H2O2. The fungal virulence to Galleria mellonella larvae decreased by 15–40% in four Δvcx1 mutants excluding Δvcx1E, which was uniquely defective in conidial thermotolerance. All the changes were restored by each vcx1 complementation. Our findings indicate that the five Vcx1 paralogues in B. bassiana contribute differentially to calcineurin-dependent Ca2+/Mn2+ tolerance, multistress responses and virulence, and recall attention to multifunctional Vcx1 paralogues in filamentous fungi.
    Fungal Genetics and Biology 09/2014; · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the antifungal effects of sesamol (Ses), a natural phenolic compound, and exemplified that it could be mediated through disruption of calcineurin signaling pathway in C. albicans, a human fungal pathogen. The repertoire of antifungal activity not only was limited to C. albicans and its six clinical isolates tested but also was against non-albicans species of Candida. Interestingly, the antifungal effect of Ses affects neither the MDR efflux transporter activity nor passive diffusion of drug. We found that C. albicans treated with Ses copies the phenotype displayed by cells having defect in calcineurin signaling leading to sensitivity against alkaline pH, ionic, membrane, salinity, endoplasmic reticulum, and serum stresses but remained resistant to thermal stress. Furthermore, the ergosterol levels were significantly decreased by 63% confirming membrane perturbations in response to Ses as also visualized through transmission electron micrographs. Despite the fact that Ses treatment mimics the phenotype of compromised calcineurin signaling, it was independent of cell wall integrity pathway as revealed by spot assays and the scanning electron micrographs. Taken together, the data procured from this study clearly ascertains that Ses is an effectual antifungal agent that could be competently employed in treating Candida infections.
    Journal of pathogens. 01/2014; 2014:895193.

Full-text (2 Sources)

Available from
May 27, 2014