Article

Yeast 3-phosphoinositide-dependent protein kinase-1 (PDK1) orthologs Pkh1-3 differentially regulate phosphorylation of protein kinase A (PKA) and the protein kinase B (PKB)/S6K ortholog Sch9.

Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven and Department of Molecular Microbiology, VIB, B-3001 Leuven-Heverlee, Flanders, Belgium.
Journal of Biological Chemistry (Impact Factor: 4.6). 06/2011; 286(25):22017-27. DOI: 10.1074/jbc.M110.200071
Source: PubMed

ABSTRACT Pkh1, -2, and -3 are the yeast orthologs of mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1). Although essential for viability, their functioning remains poorly understood. Sch9, the yeast protein kinase B and/or S6K ortholog, has been identified as one of their targets. We now have shown that in vitro interaction of Pkh1 and Sch9 depends on the hydrophobic PDK1-interacting fragment pocket in Pkh1 and requires the complementary hydrophobic motif in Sch9. We demonstrated that Pkh1 phosphorylates Sch9 both in vitro and in vivo on its PDK1 site and that this phosphorylation is essential for a wild type cell size. In vivo phosphorylation on this site disappeared during nitrogen deprivation and rapidly increased again upon nitrogen resupplementation. In addition, we have shown here for the first time that the PDK1 site in protein kinase A is phosphorylated by Pkh1 in vitro, that this phosphorylation is Pkh-dependent in vivo and occurs during or shortly after synthesis of the protein kinase A catalytic subunits. Mutagenesis of the PDK1 site in Tpk1 abolished binding of the regulatory subunit and cAMP dependence. As opposed to PDK1 site phosphorylation of Sch9, phosphorylation of the PDK1 site in Tpk1 was not regulated by nitrogen availability. These results bring new insight into the control and prevalence of PDK1 site phosphorylation in yeast by Pkh protein kinases.

0 Bookmarks
 · 
134 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cAMP dependent Protein Kinase activity, as well as other AGC members, is regulated by multiple phosphorylations of its catalytic subunits. In Saccharomyces cerevisiae PKA regulatory subunit is encoded by the gene BCY1, and the catalytic subunits are encoded by three genes: TPK1, TPK2 and TPK3. Previously we have reported that following cAMP-PKA pathway activation, Tpk1 increases its phosphorylation status. Now, in vivo genetic and in vitro experiments indicate an autophosphorylation mechanism for Tpk1. Using array peptides derived from Tpk1 we identified Ser179 as a target residue. Tpk1 is phosphorylated on Ser179 in vivo during glucose stimulus. Reduction of the activation loop Thr241 phosphorylation increases Ser179 autophosphorylation. To evaluate the role of phosphorylation on Ser179 we made strains expressing tpk1S179A or tpk1S179D as sole PKA kinase source. Our results suggest that Ser179 phosphorylation increases the reactivity towards the substrate without affecting the formation of the holoenzyme. Phenotypic readouts analysis showed that Ser179 phosphorylation increases in vivo PKA activity reducing cell survival, stress and life span. Ser179 phosphorylation increases Tpk1 cytoplasmic accumulation in glucose-growing cells. These results describe for the first time that an autophosphorylation mechanism on Tpk1 controls PKA activity in response to glucose availability.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The target of rapamycin (TOR) is an important signaling pathway on a hierarchical network of interacting pathways regulating central biological processes, such as cell growth, stress response and aging. Several lines of evidence suggest a functional link between TOR signaling and sphingolipid metabolism. Here, we report that the TORC1-Sch9p pathway is activated in cells lacking Isc1p, the yeast orthologue of mammalian neutral sphingomyelinase 2. The deletion of TOR1 or SCH9 abolishes the premature aging, oxidative stress sensitivity and mitochondrial dysfunctions displayed by isc1Δ cells and this is correlated with the suppression of the autophagic flux defect exhibited by the mutant strain. The protective effect of TOR1 deletion, as opposed to that of SCH9 deletion, is not associated with the attenuation of Hog1p hyperphosphorylation, which was previously implicated in isc1Δ phenotypes. Our data support a model in which Isc1p regulates mitochondrial function and chronological lifespan in yeast through the TORC1-Sch9p pathway although Isc1p and TORC1 also seem to act through independent pathways, as isc1Δtor1Δ phenotypes are intermediate to those displayed by isc1Δ and tor1Δ cells. We also provide evidence that TORC1 downstream effectors, the type 2A protein phosphatase Sit4p and the AGC protein kinase Sch9p, integrate nutrient and stress signals from TORC1 with ceramide signaling derived from Isc1p to regulate mitochondrial function and lifespan in yeast. Overall, our results show that TORC1-Sch9p axis is deregulated in Isc1p-deficient cells, contributing to mitochondrial dysfunction, enhanced oxidative stress sensitivity and premature aging of isc1Δ cells.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phytopathogenic fungi have evolved an amazing diversity of infection modes and nutritional strategies, yet the signaling pathways that govern pathogenicity are remarkably conserved. Protein kinases (PKs) catalyze the reversible phosphorylation of proteins, regulating a variety of cellular processes. Here, we present an overview of our current understanding of the different classes of PKs that contribute to fungal pathogenicity on plants and of the mechanisms that regulate and coordinate PK activity during infection-related development. In addition to the well-studied PK modules, such as MAPK (mitogen-activated protein kinase) and cAMP (cyclic adenosine monophosphate)-PKA (protein kinase A) cascades, we also discuss new PK pathways that have emerged in recent years as key players of pathogenic development and disease. Understanding how conserved PK signaling networks have been recruited during the evolution of fungal pathogenicity not only advances our knowledge of the highly elaborate infection process but may also lead to the development of novel strategies for the control of plant disease.
    Annual Review of Phytopathology 08/2014; 52(1):267-288. DOI:10.1146/annurev-phyto-102313-050143 · 11.00 Impact Factor