The role of 5-HT3 receptors in the additive anticonvulsant effects of citalopram and morphine on pentylenetetrazole-induced clonic seizures in mice

Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Epilepsy & Behavior (Impact Factor: 2.06). 06/2011; 21(2):122-7. DOI: 10.1016/j.yebeh.2011.03.010
Source: PubMed

ABSTRACT Citalopram, a selective serotonin reuptake inhibitor (SSRI), is frequently used in the treatment of major depressive disorders. In addition to its antidepressant features, citalopram shows some anticonvulsive properties at lower doses, whereas higher doses, ingested in cases of suicide, have been associated with seizures. Moreover, some reports support the enhancing effect of morphine on different responses of SSRIs such as analgesic and anticonvulsant properties. Although the exact mechanisms of these additive effects are not yet fully understood, 5-HT(3) receptor has recently been shown to play an important role in the central effects of SSRIs and morphine. In this regard, we used a model of clonic seizures induced by pentylenetetrazole (PTZ) in male NMRI mice to investigate whether morphine and citalopram exhibit additive anticonvulsant effects and, if so, whether this effect is mediated through modulation of 5-HT(3) receptors. In our study, citalopram at lower doses (0.5 and 1 mg/kg, ip) significantly increased the seizure threshold (P<0.01) and at a higher dose (50 mg/kg) had proconvulsive effects. Moreover, morphine at low and noneffective doses had additive effects on the anticonvulsive properties of citalopram. This additive effect was prevented by pretreatment with low and noneffective doses of tropisetron (a 5-HT(3) receptor antagonist) and augmented by 1-(m-chlorophenyl)-biguanide (mCPBG, a 5-HT(3) receptor agonist). Moreover, low doses of morphine (0.1 and 0.5 mg/kg) alone or in combination with potent doses of 5-HT(3) receptor agonist or antagonist could not alter the proconvulsive properties of citalopram at higher dose (50 mg/kg), ruling out the contribution of 5-HT(3) to this effect. In summary, our findings demonstrate that 5-HT(3) receptor mediates the additive anticonvulsant properties of morphine and low-dose citalopram. This could constitute a new approach to augmenting the efficacy and curtailing the adverse effects of citalopram.


Available from: Reza Rahimian, Jun 15, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, studies have shown that serotonin plays an important role in the control of seizure. However, the specific role of 5-HT receptor subtypes is not yet well described, in particular that of the 5-HT3 receptor. The present study was aimed to investigate the role of 5-HT3 receptor on the pentylenetetrazole (PTZ)-induced seizure in mice. Firstly, seizure latency was significantly prolonged by a 5-HT3 receptor agonist SR 57227 in a dose-dependent manner. Seizure score and mortality were also decreased by SR 57227 in PTZ-treated mice. Furthermore, these anticonvulsant effects of SR 57227 were inhibited by a 5-HT3 receptor antagonist ondansetron. However, ondansetron alone had no effect on seizure latency, seizure score or mortality at different doses. Immunohistochemical studies have also shown that c-Fos expression was significantly increased in hippocampus (dentate gyrus, CA1, CA3 and CA4) of PTZ-treated mice. Furthermore, c-Fos expression was significantly inhibited by ondansetron in mice treated with PTZ and SR 57227. An ELISA study showed that SR 57227 attenuated the PTZ-induced inhibitory effects of GABA levels in hippocampus and cortex, and the attenuated effects of SR 57227 were antagonized by ondansetron in hippocampus but not cortex. Our findings suggest that activation of 5-HT3 receptor by SR 57227, which plays an important role on the control of seizure induced by PTZ, may be related to GABA activity in hippocampus. Therefore, 5-HT3 receptor subtype is a potential target for the treatment of epilepsy.
    PLoS ONE 04/2014; 9(4):e93158. DOI:10.1371/journal.pone.0093158 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many brain disorders, including epilepsy, migraine and depression, manifest with episodic symptoms that may last for various time intervals. Transient alterations of neuronal function such as related to serotonin homeostasis generally underlie this phenomenon. Several nucleotide polymorphisms (SNPs) in gene promoters associated with these diseases have been described. For obvious reasons, their regulatory roles on gene expression particularly in human brain tissue remain largely enigmatic. The rs6295 G-/C-allelic variant is located in the promoter region of the human HTR1a gene, encoding the G-protein-coupled receptor for 5-hydroxytryptamine (5HT1AR). In addition to reported transcriptional repressor binding, our bioinformatic analyses predicted a reduced binding affinity of the transcription factor (TF) c-Jun for the G-allele. In vitro luciferase transfection assays revealed c-Jun to (a) activate the rs6295 C- significantly stronger than the G-allelic variant and (b) antagonize efficiently the repressive effect of Hes5 on the promoter. The G-allele of rs6295 is known to be associated with aspects of major depression and migraine. In order to address a potential role of rs6295 variants in human brain tissue, we have isolated DNA and mRNA from fresh frozen hippocampal tissue of pharmacoresistant temporal lobe epilepsy (TLE) patients (n=140) after epilepsy surgery for seizure control. We carried out SNP genotyping studies and mRNA analyses in order to determine HTR1a mRNA expression in human hippocampal samples stratified according to the rs6295 allelic variant. The mRNA expression of HTR1a was significantly more abundant in hippocampal mRNA of TLE patients homozygous for the rs6295 C-allele as compared to those with the GG-genotype. These data may point to a novel, i.e. rs6295 allelic variant and c-Jun dependent transcriptional 5HT1AR 'receptoropathy'.
    Brain research 01/2013; 1499. DOI:10.1016/j.brainres.2012.12.045 · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
    Peptides 10/2012; 38(2). DOI:10.1016/j.peptides.2012.09.027 · 2.61 Impact Factor