Article

Cognition in circadian rhythm sleep disorders

Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
Progress in brain research (Impact Factor: 4.19). 01/2011; 190:3-20. DOI: 10.1016/B978-0-444-53817-8.00001-3
Source: PubMed

ABSTRACT Circadian rhythms in physiology and behavior exist in all living organisms, from cells to humans. The most evident rhythms are the recurrent cycles of sleep and wake as well as changes in alertness and cognitive performance across the 24h. Clearly, sleep pressure can exert a strong influence on cognitive performance, but the influence of circadian modulation of alertness and cognitive function is evident even when the pressure for sleep is high. Circadian rhythms also influence more complex cognitive tasks, such as selective attention and executive function, which are important for work performance and safety. The circadian timekeeping system also ensures that circadian rhythms are appropriately synchronized to the external physical environment and work and social schedules. Circadian misalignment is the basis for all circadian rhythm sleep disorders. These disorders are often associated with impairments of cognitive performance that can have adverse effects on school and work performance, overall quality of life, and safety.

1 Bookmark
 · 
118 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In saturation diving, divers stay under pressure until most of their tissues are saturated with breathing gas. Divers spend a long time in isolation exposed to increased partial pressure of oxygen, potentially toxic gases, bacteria, and bubble formation during decompression combined with shift work and long periods of relative inactivity. Hyperoxia may lead to the production of reactive oxygen species (ROS) that interact with cell structures, causing damage to proteins, lipids, and nucleic acid. Vascular gas-bubble formation and hyperoxia may lead to dysfunction of the endothelium. The antioxidant status of the diver is an important mechanism in the protection against injury and is influenced both by diet and genetic factors. The factors mentioned above may lead to production of heat shock proteins (HSP) that also may have a negative effect on endothelial function. On the other hand, there is a great deal of evidence that HSPs may also have a "conditioning" effect, thus protecting against injury. As people age, their ability to produce antioxidants decreases. We do not currently know the capacity for antioxidant defense, but it is reasonable to assume that it has a limit. Many studies have linked ROS to disease states such as cancer, insulin resistance, diabetes mellitus, cardiovascular diseases, and atherosclerosis as well as to old age. However, ROS are also involved in a number of protective mechanisms, for instance immune defense, antibacterial action, vascular tone, and signal transduction. Low-grade oxidative stress can increase antioxidant production. While under pressure, divers change depth frequently. After such changes and at the end of the dive, divers must follow procedures to decompress safely. Decompression sickness (DCS) used to be one of the major causes of injury in saturation diving. Improved decompression procedures have significantly reduced the number of reported incidents; however, data indicate considerable underreporting of injuries. Furthermore, divers who are required to return to the surface quickly are under higher risk of serious injury as no adequate decompression procedures for such situations are available. Decompression also leads to the production of endothelial microparticles that may reduce endothelial function. As good endothelial function is a documented indicator of health that can be influenced by regular exercise, regular physical exercise is recommended for saturation divers. Nowadays, saturation diving is a reasonably safe and well controlled method for working under water. Until now, no long-term impact on health due to diving has been documented. However, we still have limited knowledge about the pathophysiologic mechanisms involved. In particular we know little about the effect of long exposure to hyperoxia and microparticles on the endothelium. © 2014 American Physiological Society. Compr Physiol 4:1229-1272, 2014.
    07/2014; 4(3):1229-72. DOI:10.1002/cphy.c130048
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human circadian system creates and maintains cellular and systemic rhythmicity essential to homeostasis. Loss of circadian rhythmicity fundamentally affects the neuroendocrine, immune and autonomic system, similar to chronic stress and, thus, may play a central role in the development of stress-related disorders. This article focuses on the role of circadian misalignment in the pathophysiology of posttraumatic stress disorder (PTSD).
  • Source
    Current Opinion in Psychiatry 01/2014; · 3.55 Impact Factor