Differentiation of nitrous oxide emission factors for agricultural soils.

Alterra, Wageningen UR, P.O. Box 47, 6700 AA Wageningen, The Netherlands.
Environmental Pollution (Impact Factor: 3.73). 04/2011; 159(11):3215-22. DOI: 10.1016/j.envpol.2011.04.001
Source: PubMed

ABSTRACT Nitrous oxide (N(2)O) direct soil emissions from agriculture are often estimated using the default IPCC emission factor (EF) of 1%. However, a large variation in EFs exists due to differences in environment, crops and management. We developed an approach to determine N(2)O EFs that depend on N-input sources and environmental factors. The starting point of the method was a monitoring study in which an EF of 1% was found. The conditions of this experiment were set as the reference from which the effects of 16 sources of N input, three soil types, two land-use types and annual precipitation on the N(2)O EF were estimated. The derived EF inference scheme performed on average better than the default IPCC EF. The use of differentiated EFs, including different regional conditions, allows accounting for the effects of more mitigation measures and offers European countries a possibility to use a Tier 2 approach.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitrous oxide (N2O) emissions from agricultural soils, mainly caused by chemical nitrogen (N) fertilizer inputs, are major sources of N2O in Chinese terrestrial ecosystems. Thus, attempts to reduce N2O emissions from agricultural soils by optimizing N applications are receiving increasing attention. Further, organic fertilizers are being increasingly used in China to improve crop production/quality and prevent or reduce soil degradation. However, organic and chemical fertilizers are often both applied in spring in northeast China, which promotes N2O emissions and may be sub-optimal. Therefore, we hypothesized that reducing applications of chemical fertilizer N and applying manure in autumn could be an effective strategy for mitigating N2O emissions from cropped soils in the region. To test this hypothesis, we established a field trial to investigate the effects of different combinations of chemical N fertilizer applications and animal manure in autumn on both N2O emissions and maize (Zea mays L.) grain yields in northeast China. The treatments, expressed as NxMy (where Nx and My denote the total amounts of chemical fertilizer nitrogen (N) and manure (M) applied in kg N ha−1 and m3 M ha−1, respectively), were N0M0, N230M0, N270M12, N230M15, N320M18 in 2010 and N0M0, N230M0, N200M12, N200M15, N280M18 in 2011. Measurements of the resulting N2O emissions showed that pulse fluxes occurred after each chemical N fertilizer application, but not after manure inputs in autumn or during soil-thawing periods in the following spring. Emission factors for the chemical fertilizer N were on average 1.07% (1.00˜1.10%) and 1.14% (0.49˜1.83%) in 2010 and 2011, respectively. Furthermore, by comparing the nine pairs of fertilization treatments, the relative increase in cumulative nitrous oxide-nitrogen (N2O-N) emissions was found to be proportional to the relative increase in urea application, but independent of the amount of autumn-applied manure. These findings imply that N2O emissions from fertilized agricultural soils in northeast China could be mitigated by supplying manure in the autumn and reducing the total amount of chemical N fertilizer applied in the following year. Although no significant difference in maize grain yield was found among the fertilization treatments, the grain yield-scaled N2O emissions for the treatments with a lower chemical N application (e.g., N230M15 and N200M15 treatments) were significantly lower than those with a higher chemical N application (e.g., N320M18 and N280M18 treatments). Meanwhile, under the condition of the same application amount of chemical fertilizer N, the grain yield-scaled N2O emission decreased with the increase of manure application rate. Thus, the results support the hypothesis that combining reductions in chemical N fertilizer and applying manure in autumn could be an effective strategy for mitigating N2O emissions from N-fertilized soils in northeast China.
    Soil Science and Plant Nutrition 06/2013; 59(3). · 0.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome scale metabolic modelling has traditionally been used to explore metabolism of individual cells or tissues. In higher organisms, the metabolism of individual tissues and organs is coordinated for the overall growth and well-being of the organism. Understanding the dependencies and rationale for multicellular metabolism is far from trivial. Here, we have advanced the use of AraGEM (a genome-scale reconstruction of Arabidopsis metabolism) in a multi-tissue context to understand how plants grow utilizing their leaf, stem and root systems across the day-night (diurnal) cycle. Six tissue compartments were created, each with their own distinct set of metabolic capabilities, and hence a reliance on other compartments for support. We used the multi-tissue framework to explore differences in the ‘division-of-labour’ between the sources and sink tissues in response to: (a) the energy demand for the translocation of C and N species in between tissues; and (b) the use of two distinct nitrogen sources (NO3- or NH4+). The ‘division-of-labour’ between compartments was investigated using a minimum energy (photon) objective function. Random sampling of the solution space was used to explore the flux distributions under different scenarios as well as to identify highly coupled reaction sets in different tissues and organelles. Efficient identification of these sets was achieved by casting this problem as a maximum clique enumeration problem. The framework also enabled assessing the impact of energetic constraints in resource (redox and ATP) allocation between leaf, stem and root tissues required for efficient carbon and nitrogen assimilation, including the diurnal cycle constraint forcing the plant to set aside resources during the day and defer metabolic processes that are more efficiently performed at night. This study is a first step towards autonomous modelling of whole plant metabolism.
    Frontiers in Plant Science 01/2015; 6(4). · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH4(+) and NO3(-)) regulating the emissions of greenhouse gases (i.e. N2O, CO2 and CH4) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N2O, NO, CH4 and CO2 were measured during 85days. Fertigation with urea instead of calcium nitrate increased N2O and NO emissions by a factor of 2.4 and 2.9, respectively (P<0.005). Daily irrigation reduced NO emissions by 42% (P<0.005) but increased CO2 emissions by 21% (P<0.05) compared with weekly irrigation. We found no relation between irrigation frequency and N2O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO3(-)-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation.
    Science of The Total Environment 06/2014; 490C:880-888. · 3.16 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014