Growth hormone-releasing hormone: Not only a neurohormone

Department of Biochemistry, University of Athens Medical School, Mikras Asias 75, 11527 Athens, Greece.
Trends in Endocrinology and Metabolism (Impact Factor: 9.39). 04/2011; 22(8):311-7. DOI: 10.1016/j.tem.2011.03.006
Source: PubMed


Growth hormone-releasing hormone (GHRH) is mostly thought to act by stimulating the production and release of growth hormone from the pituitary. However, this neuropeptide emerges as a rather pleiotropic hormone in view of the identification of various extrapituitary sources for GHRH production, as well as the demonstration of a direct action of GHRH on several tissues other than the pituitary. Non-pituitary GHRH has a wide spectrum of activity, exemplified by its ability to modulate cell proliferation, especially in malignant tissues, to regulate differentiation of some cell types, and to promote healing of skin wounds. These findings extend the role of GHRH and its analogs beyond its accepted regulation of somatotropic activity and indicate new possibilities for therapeutic intervention.

4 Reads
  • Source
    • "Both the GHRH-R and the bioactive SV1 receptor, the latter of which is expressed in HL-MVEC, are coupled to heterotrimeric G proteins (Mayo et al., 1995; Sherwood et al., 2000; Kiaris et al., 2011). The latter consist of α, β, and γ subunits and function as transducers of signals from G-protein coupled receptors (GPCRs). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Rationale: Antibiotic treatment of patients infected with G(-) or G(+) bacteria promotes release of the toxins lipopolysaccharide (LPS) and pneumolysin (PLY) in their lungs. Growth Hormone-releasing Hormone (GHRH) agonist JI-34 protects human lung microvascular endothelial cells (HL-MVEC), expressing splice variant 1 (SV-1) of the receptor, from PLY-induced barrier dysfunction. We investigated whether JI-34 also blunts LPS-induced hyperpermeability. Since GHRH receptor (GHRH-R) signaling can potentially stimulate both cAMP-dependent barrier-protective pathways as well as barrier-disruptive protein kinase C pathways, we studied their interaction in GHRH agonist-treated HL-MVEC, in the presence of PLY, by means of siRNA-mediated protein kinase A (PKA) depletion. Methods: Barrier function measurements were done in HL-MVEC monolayers using Electrical Cell substrate Impedance Sensing (ECIS) and VE-cadherin expression by Western blotting. Capillary leak was assessed by Evans Blue dye (EBD) incorporation. Cytokine generation in broncho-alveolar lavage fluid (BALF) was measured by multiplex analysis. PKA and PKC-α activity were assessed by Western blotting. Results: GHRH agonist JI-34 significantly blunts LPS-induced barrier dysfunction, at least in part by preserving VE-cadherin expression, while not affecting inflammation. In addition to activating PKA, GHRH agonist also increases PKC-α activity in PLY-treated HL-MVEC. Treatment with PLY significantly decreases resistance in control siRNA-treated HL-MVEC, but does so even more in PKA-depleted monolayers. Pretreatment with GHRH agonist blunts PLY-induced permeability in control siRNA-treated HL-MVEC, but fails to improve barrier function in PKA-depleted PLY-treated monolayers. Conclusions: GHRH signaling in HL-MVEC protects from both LPS and PLY-mediated endothelial barrier dysfunction and concurrently induces a barrier-protective PKA-mediated and a barrier-disruptive PKC-α-induced pathway in the presence of PLY, the former of which dominates the latter.
    Frontiers in Physiology 07/2014; 5:259. DOI:10.3389/fphys.2014.00259 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: AMP-activated protein kinase (AMPK) regulates cellular proliferation, growth and metabolism. Targeted activation of AMPK is considered an important therapeutic strategy for cancer treatment. To evaluate the effect of growth hormone-releasing hormone (GHRH) and its antagonist MZ-5-156 on the phosphorylation of AMPK and other related regulatory intracellular proteins we employed human non-small cell lung cancer cell line A549, which expresses GHRH receptors. Treatment of A549 cells with GHRH antagonist decreased cell proliferation and activated AMPK as well as glycogen synthase kinase (GSK)3β. Furthermore, MZ-5-156 inhibited Akt, the mammalian target of rapamycin (mTOR) and its downstream target eIF4E which controls protein synthesis and cell growth. GHRH(1-29)NH2 counteracted all these effects. HeLa human endometrial cancer cells which do not express any GHRH receptors were used as a negative control and GHRH did not induce the AMPK activation in these cells. Our results demonstrate for the first time that GHRH antagonists can regulate the AMPK metabolic pathway, which is crucial for the growth of non-small cell lung cancer and other major cancers.
    Cell cycle (Georgetown, Tex.) 11/2011; 10(21):3714-8. DOI:10.4161/cc.10.21.17904 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, numerous new targets have been identified and new experimental therapeutics have been developed. Importantly, existing non-cancer drugs found novel use in cancer therapy. And even more importantly, new original therapeutic strategies to increase potency, selectivity and decrease detrimental side effects have been evaluated. Here we review some recent advances in targeting cancer.
    Aging 12/2011; 3(12):1154-62. · 6.43 Impact Factor
Show more