Article

Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia II: developing imaging biomarkers to enhance treatment development for schizophrenia and related disorders.

Department of Psychiatry, University of California at Davis, Sacramento, California, USA.
Biological psychiatry (Impact Factor: 9.47). 07/2011; 70(1):7-12. DOI: 10.1016/j.biopsych.2011.01.041
Source: PubMed

ABSTRACT The Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) initiative, funded by an R13 from the National Institute of Mental Health, seeks to enhance translational research in treatment development for impaired cognition in schizophrenia by developing tools from cognitive neuroscience into useful measures of treatment effects on behavior and brain function. An initial series of meetings focused on the selection of a new set of tasks from cognitive neuroscience for the measurement of treatment effects on specific cognitive and neural systems. Subsequent validation and optimization studies are underway and a subset of validated measures with well-characterized psychometric properties will be generally available in 2011. This article describes results of the first meeting of the second phase of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia, which seeks to develop imaging biomarkers and improved animal models to enhance translational research. In this meeting, we considered issues related to the use of methods such as functional magnetic resonance imaging, electroencephalography, magnetoencephalography, and transcranial magnetic simulation as biomarkers for treatment development. We explored the biological nature of the signals measured by each method, their validity and reliability as measures of cognition-related neural activity, potential confounds related to drug effects on the signal of interest, and conceptual, methodological, and pragmatic issues related to their use in preclinical, first into human, and multicenter phase II and III studies. This overview article describes the background and goals of the meeting together with a summary of the major issues discussed in more detail in the accompanying articles appearing in this issue of Biological Psychiatry.

4 Followers
 · 
142 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is a life-long debilitating mental disorder affecting tens of millions of people worldwide. The serendipitous discovery of antipsychotics focused pharmaceutical research on developing a better antipsychotic. Our understanding of the disorder has advanced however, with the knowledge that cognitive enhancers are required for patients in order to improve their everyday lives. While antipsychotics treat psychosis, they do not enhance cognition and hence are not antischizophrenics. Developing pro-cognitive therapeutics has been extremely difficult, however, especially when no approved treatment exists. In lieu of stumbling on an efficacious treatment, developing targeted compounds can be facilitated by understanding the neural mechanisms underlying altered cognitive functioning in patients. Equally importantly, these cognitive domains will need to be measured similarly in animals and humans so that novel targets can be tested prior to conducting expensive clinical trials. To date, the limited similarity of testing across species has resulted in a translational bottleneck. In this review, we emphasize that schizophrenia is a disorder characterized by abnormal cognitive behavior. Quantifying these abnormalities using tasks having cross-species validity would enable the quantification of comparable processes in rodents. This approach would increase the likelihood that the neural substrates underlying relevant behaviors will be conserved across species. Hence, we detail cross-species tasks which can be used to test the effects of manipulations relevant to schizophrenia and putative therapeutics. Such tasks offer the hope of providing a bridge between non-clinical and clinical testing that will eventually lead to treatments developed specifically for patients with deficient cognition. © The Author(s) 2014.
    Journal of Psychopharmacology 12/2014; 29(2). DOI:10.1177/0269881114555252 · 2.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bipolar Disorder (BD) is a unique disorder that transcends domains of function since the same patient can exhibit depression or mania, states with polar opposite mood symptoms. During depression, people feel helplessness, reduced energy, and risk aversion, while with mania behaviors include grandiosity, increased energy, less sleep, and risk preference. The neural mechanism(s) underlying each state are gaining clarity, with catecholaminergic disruption seen during mania, and cholinergic dysfunction during depression. The fact that the same patient cycles/switches between these states is the defining characteristic of BD however. Of greater importance therefore, is the mechanism(s) underlying cycling from one state - and its associated neural changes - to another, considered the 'holy grail' of BD research. Herein, we review studies investigating triggers that induce switching to these states. By identifying such triggers, researchers can study neural mechanisms underlying each state and importantly how such mechanistic changes can occur in the same subject. Current animal models of this switch are also discussed, from submissive- and dominant-behaviors to kindling effects. Focus however, is placed on how seasonal changes can induce manic and depressive states in BD sufferers. Importantly, changing photoperiod lengths can induce local switches in neurotransmitter expression in normal animals, from increased catecholaminergic expression during periods of high activity, to increased somatostatin and corticotrophin releasing factor during periods of low activity. Identifying susceptibilities to this switch would enable the development of targeted animal models. From animal models, targeted treatments could be developed and tested that would minimize the likelihood of switching. Copyright © 2015. Published by Elsevier B.V.
    European journal of pharmacology 03/2015; DOI:10.1016/j.ejphar.2015.03.019 · 2.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Basic visual dysfunctions are commonly reported in schizophrenia; however their value as diagnostic tools remains uncertain. This study reports a novel electrophysiological approach using checkerboard visual evoked potentials (VEP). Sources of spectral resolution VEP-components C1, P1 and N1 were estimated by LORETA, and the band-effects (BSE) on these estimated sources were explored in each subject. BSEs were Z-transformed for each component and relationships with clinical variables were assessed. Clinical effects were evaluated by ROC-curves and predictive values. Forty-eight patients with schizophrenia (SZ) and 55 healthy controls participated in the study. For each of the 48 patients, the three VEP components were localized to both dorsal and ventral brain areas and also deviated from a normal distribution. P1 and N1 deviations were independent of treatment, illness chronicity or gender. Results from LORETA also suggest that deficits in thalamus, posterior cingulum, precuneus, superior parietal and medial occipitotemporal areas were associated with symptom severity. While positive symptoms were more strongly related to sensory processing deficits (P1), negative symptoms were more strongly related to perceptual processing dysfunction (N1). Clinical validation revealed positive and negative predictive values for correctly classifying SZ of 100% and 77%, respectively. Classification in an additional independent sample of 30 SZ corroborated these results. In summary, this novel approach revealed basic visual dysfunctions in all patients with schizophrenia, suggesting these visual dysfunctions represent a promising candidate as a biomarker for schizophrenia.
    Schizophrenia Research 08/2014; 159(1). DOI:10.1016/j.schres.2014.07.052 · 4.43 Impact Factor

Full-text (2 Sources)

Download
61 Downloads
Available from
May 19, 2014