Article

Blood pressure changes after automatic and fixed CPAP in obstructive sleep apnea: relationship with nocturnal sympathetic activity.

Institute of Biomedicine and Molecular Immunology, National Research Council, Palermo, Italy.
Clinical and Experimental Hypertension (Impact Factor: 1.46). 05/2011; 33(6):373-80. DOI: 10.3109/10641963.2010.531853
Source: PubMed

ABSTRACT Treatment of obstructive sleep apnea (OSA) by continuous positive airway pressure (CPAP) usually causes a reduction in blood pressure (BP), but several factors may interfere with its effects. In addition, although a high sympathetic activity is considered a major contributor to increased BP in OSA, a relationship between changes in BP and in sympathetic nervous system activity after OSA treatment is uncertain. This study was undertaken to assess if, in OSA subjects under no pharmacologic treatment, treatment by CPAP applied at variable levels by an automatic device (APAP) may be followed by a BP reduction, and if that treatment is associated with parallel changes in BP and catecholamine excretion during the sleep hours. Nine subjects underwent 24-h ambulatory BP monitoring and nocturnal urinary catecholamine determinations before OSA treatment and 2 months following OSA treatment by APAP (Somnosmart2, Weinmann, Hamburg, Germany). Eight control subjects were treated by CPAP at a fixed level. After APAP treatment, systolic blood pressure (SBP) decreased during sleep (p < 0.05), while diastolic blood pressure (DBP) decreased both during wakefulness (p < 0.05) and sleep (p < 0.02). Similar changes were observed in subjects receiving fixed CPAP. Nocturnal DBP changes were correlated with norepinephrine (in the whole sample: r = .61, p < 0.02) and normetanephrine (r = .71, p < 0.01) changes. In OSA subjects under no pharmacologic treatment, APAP reduces BP during wakefulness and sleep, similarly to CPAP. A reduction in nocturnal sympathetic activity could contribute to the reduction in DBP during sleep following OSA treatment.

0 Followers
 · 
137 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: More than 70% of patients with resistant hypertension have obstructive sleep apnea (OSA). However, there is little evidence about the effect of continuous positive airway pressure (CPAP) treatment on blood pressure in patients with resistant hypertension. To assess the effect of CPAP treatment on blood pressure values and nocturnal blood pressure patterns in patients with resistant hypertension and OSA. Open-label, randomized, multicenter clinical trial of parallel groups with blinded end point design conducted in 24 teaching hospitals in Spain involving 194 patients with resistant hypertension and an apnea-hypopnea index (AHI) of 15 or higher. Data were collected from June 2009 to October 2011. CPAP or no therapy while maintaining usual blood pressure control medication. The primary end point was the change in 24-hour mean blood pressure after 12 weeks. Secondary end points included changes in other blood pressure values and changes in nocturnal blood pressure patterns. Both intention-to-treat (ITT) and per-protocol analyses were performed. A total of 194 patients were randomly assigned to receive CPAP (n = 98) or no CPAP (control; n = 96). The mean AHI was 40.4 (SD, 18.9) and an average of 3.8 antihypertensive drugs were taken per patient. Baseline 24-hour mean blood pressure was 103.4 mm Hg; systolic blood pressure (SBP), 144.2 mm Hg; and diastolic blood pressure (DBP), 83 mm Hg. At baseline, 25.8% of patients displayed a dipper pattern (a decrease of at least 10% in the average nighttime blood pressure compared with the average daytime blood pressure). The percentage of patients using CPAP for 4 or more hours per day was 72.4%. When the changes in blood pressure over the study period were compared between groups by ITT, the CPAP group achieved a greater decrease in 24-hour mean blood pressure (3.1 mm Hg [95% CI, 0.6 to 5.6]; P = .02) and 24-hour DBP (3.2 mm Hg [95% CI, 1.0 to 5.4]; P = .005), but not in 24-hour SBP (3.1 mm Hg [95% CI, -0.6 to 6.7]; P = .10) compared with the control group. Moreover, the percentage of patients displaying a nocturnal blood pressure dipper pattern at the 12-week follow-up was greater in the CPAP group than in the control group (35.9% vs 21.6%; adjusted odds ratio [OR], 2.4 [95% CI, 1.2 to 5.1]; P = .02). There was a significant positive correlation between hours of CPAP use and the decrease in 24-hour mean blood pressure (r = 0.29, P = .006), SBP (r = 0.25; P = .02), and DBP (r = 0.30, P = .005). Among patients with OSA and resistant hypertension, CPAP treatment for 12 weeks compared with control resulted in a decrease in 24-hour mean and diastolic blood pressure and an improvement in the nocturnal blood pressure pattern. Further research is warranted to assess longer-term health outcomes. clinicaltrials.gov Identifier: NCT00616265.
    JAMA The Journal of the American Medical Association 12/2013; 310(22):2407-15. DOI:10.1001/jama.2013.281250 · 30.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular autonomic control changes across sleep stages. Thus, blood pressure (BP), heart rate and peripheral vascular resistances progressively decrease in non rapid eye movement sleep. Any deterioration in sleep quality or quantity may be associated with an increase in nocturnal BP which could participate in the development or poor control of hypertension. In the present report, sleep problems/disorders, which impact either the sleep quality or quantity, are reviewed for their interaction with BP regulation and their potential association with prevalent or incident hypertension. Obstructive sleep apnea syndrome, sleep duration/deprivation, insomnia, restless legs syndrome and narcolepsy are successively reviewed. Obstructive sleep apnea is clearly associated with the development of hypertension that is only slightly reduced by continuous positive airway pressure treatment. Shorter and longer sleep durations are associated with prevalent or incident hypertension but age, gender, environmental exposures and ethnic disparities are clear confounders. Insomnia with objective short sleep duration, restless legs syndrome and narcolepsy may impact BP control, needing additional studies to establish their impact in the development of permanent hypertension. Addressing sleep disorders or sleep habits seems a relevant issue when considering the risk of developing hypertension or the control of pre-existent hypertension. Combined sleep problems may have potential synergistic deleterious effects.
    Sleep Medicine Reviews 12/2014; DOI:10.1016/j.smrv.2014.03.003 · 9.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sleep disorders like obstructive sleep apnea in adults are associated with increased sympathetic activity, which induced high blood pressure and could be associated with resistant hypertension. Some studies have demonstrated that high urinary catecholamine levels in obstructive sleep apnea patients may be decreased with continuous positive airway pressure therapy. However, very few studies have demonstrated a correlation between apnea-hypopnea index and urinary catecholamine levels in hypertension patients.
    Annales de cardiologie et d'angeiologie 06/2014; DOI:10.1016/j.ancard.2014.05.004 · 0.30 Impact Factor