Article

OLIG gene targeting in human pluripotent stem cells for motor neuron and oligodendrocyte differentiation.

Department of Reproductive Medicine, University of California San Diego, San Diego, California, USA.
Nature Protocol (Impact Factor: 8.36). 05/2011; 6(5):640-55. DOI: 10.1038/nprot.2011.310
Source: PubMed

ABSTRACT Pluripotent stem cells can be genetically labeled to facilitate differentiation studies. In this paper, we describe a gene-targeting protocol to knock in a GFP cassette into key gene loci in human pluripotent stem cells (hPSCs), and then use the genetically tagged hPSCs to guide in vitro differentiation, immunocytochemical and electrophysiological profiling and in vivo characterization after cell transplantation. The Olig transcription factors have key roles in the transcription regulatory pathways for the genesis of motor neurons (MNs) and oligodendrocytes (OLs). We have generated OLIG2-GFP hPSC reporter lines that reliably mark MNs and OLs for monitoring their sequential differentiation from hPSCs. The expression of the GFP reporter recapitulates the endogenous expression of OLIG genes. The in vitro characterization of fluorescence-activated cell sorting-purified cells is consistent with cells of the MN or OL lineages, depending on the stages at which they are collected. This protocol is efficient and reliable and usually takes 5-7 months to complete. The genetic tagging-differentiation methodology used herein provides a general framework for similar work for differentiation of hPSCs into other lineages.

1 Follower
 · 
108 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: j.stemcr.2014.06.012 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). SUMMARY Multiple sclerosis (MS) is a chronic demyelinating disease of unknown etiology that affects the CNS. While current therapies are primarily directed against the immune system, the new challenge is to address progressive MS with remyelinating and neuroprotective strategies. Here, we develop a highly reproducible protocol to efficiently derive oligodendrocyte progenitor cells (OPCs) and mature oligodendro-cytes from induced pluripotent stem cells (iPSCs). Key elements of our protocol include adherent cultures, dual SMAD inhibition, and addition of retinoids from the beginning of differentiation, which lead to increased yields of OLIG2 progenitors and high numbers of OPCs within 75 days. Furthermore, we show the generation of viral and integration-free iPSCs from primary progressive MS (PPMS) patients and their efficient differentiation to oligodendrocytes. PPMS OPCs are functional, as demonstrated by in vivo myelination in the shiverer mouse. These results provide encouraging advances toward the development of autologous cell therapies using iPSCs.
    08/2014; DOI:10.13140/2.1.3094.5925
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OLIG1 is an oligodendrocyte (OL) transcription factor, which can contribute to the proliferation and differentiation of OLs, and the maturation of myelin. The aim of this study was to clarify the role of OLIG1 in neonatal Sprague Dawley rats with periventricular leukomalacia (PVL), induced by hypoxia‑ischemia (HI). Newborn rats in the HI group were subjected to ligation of the right carotid artery, followed by 8% oxygen delivery for 2 h, while rats in the normoxia group were only subjected to isolation of the right carotid artery, without exposure to hypoxia. Samples of brain tissue from rats in both groups were collected at 1, 3, 7, 14 and 21 days. In the HI group, observation by transmission electron microscopy (TEM) revealed OLs with a damaged nuclear membrane, cellular atrophy, deformation and necrosis, and cells in myelin with a high number of small vacuoles. A double‑label immunofluorescence assay revealed the translocation of OLIG1 from the cytoplasm to the nucleus, while western blot and reverse transcription‑quantitative polymerase chain reaction assays showed that there is a significant decrease, followed by an increase, in the gene and protein expression levels of OLIG1 and myelin basic protein (MBP). Despite the increase at the late stages of HI, the final levels of these proteins remained lower than the corresponding levels in the normoxia group. In conclusion, the decreased protein expression of OLIG1 following HI plays an important role in inhibiting the development and maturation of OLs and myelin. Although OLIG1 may, via its nuclear translocation, promote the growth and development of myelin to a certain extent, this factor fails to fully repair injured myelin.
    Molecular Medicine Reports 12/2014; 11(4). DOI:10.3892/mmr.2014.3028 · 1.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite significant advances in commercially available media and kits and the differentiation approaches for human neural stem cell (NSC) generation, NSC production from the differentiation of human pluripotent stem cell (hPSC) is complicated by its time-consuming procedure, complex medium composition, and purification step. In this study, we developed a convenient and simplified NSC production protocol to meet the demand of NSC production. We demonstrated that NSCs can be generated efficiently without requirement of specific small molecules or embryoid body formation stage. Our experimental results suggest that a short suspension culture period may facilitate ectoderm lineage specification rather than endoderm or mesoderm lineage specification from hPSCs. The method developed in this study shortens the turnaround time of NSC production from both human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) differentiation. It provides a straightforward and useful strategy for generating NSCs that can benefit a wide range of research applications for human brain research.
    Journal of Biotechnology 08/2014; 188. DOI:10.1016/j.jbiotec.2014.07.453 · 2.88 Impact Factor

Full-text

Download
25 Downloads
Available from
Jun 4, 2014