Using the time and motion method to study clinical work processes and workflow: Methodological inconsistencies and a call for standardized research

School of Public Health, Department of Health Management and Policy, University of Michigan, Ann Arbor, Michigan 48109-2029, USA.
Journal of the American Medical Informatics Association (Impact Factor: 3.5). 04/2011; 18(5):704-10. DOI: 10.1136/amiajnl-2011-000083
Source: PubMed


To identify ways for improving the consistency of design, conduct, and results reporting of time and motion (T&M) research in health informatics.
We analyzed the commonalities and divergences of empirical studies published 1990-2010 that have applied the T&M approach to examine the impact of health IT implementation on clinical work processes and workflow. The analysis led to the development of a suggested 'checklist' intended to help future T&M research produce compatible and comparable results. We call this checklist STAMP (Suggested Time And Motion Procedures).
STAMP outlines a minimum set of 29 data/ information elements organized into eight key areas, plus three supplemental elements contained in an 'Ancillary Data' area, that researchers may consider collecting and reporting in their future T&M endeavors.
T&M is generally regarded as the most reliable approach for assessing the impact of health IT implementation on clinical work. However, there exist considerable inconsistencies in how previous T&M studies were conducted and/or how their results were reported, many of which do not seem necessary yet can have a significant impact on quality of research and generalisability of results. Therefore, we deem it is time to call for standards that can help improve the consistency of T&M research in health informatics. This study represents an initial attempt.
We developed a suggested checklist to improve the methodological and results reporting consistency of T&M research, so that meaningful insights can be derived from across-study synthesis and health informatics, as a field, will be able to accumulate knowledge from these studies.

Download full-text


Available from: Kai Zheng, Sep 06, 2015
17 Reads
  • Source
    • "Methodological challenges are the most significant barrier to delivering the promised benefits from workflow studies [2] [9]. Clinical workflow directly impacts patient safety and the quality of clinical care, yet existing methods to describe clinical workflow that examine the linkages between clinical workflow and patient outcomes are inefficient and limited in response to rapid clinical changes [2] [10]. Although current qualitative or quantitative field methods such as observations and interviews are useful for rich description of phenomena in context , four interrelated limitations exist: (1) qualitative designs do not lend themselves to quantitative analysis; (2) descriptions are resource-intensive and impractical for large-scale studies; (3) even quantitative field approaches yield small sample sizes; (4) findings are descriptive, thereby limiting conclusions about statistical inferences between workflow and outcomes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to describe a workflow analysis approach and apply it in emergency departments (EDs) using data extracted from the electronic health record (EHR) system. We used data that were obtained during 2013 from the ED of a children's hospital and its four satellite EDs. Workflow-related data were extracted for all patient visits with either a primary or secondary diagnosis on discharge of asthma (ICD-9 code=493). For each patient visit, eight different a priori time-stamped events were identified. Data were also collected on mode of arrival, patient demographics, triage score (i.e. acuity level), and primary/secondary diagnosis. Comparison groups were by acuity levels 2 and 3 with 2 being more acute than 3, arrival mode (ambulance versus walk-in), and site. Data were analyzed using a visualization method and Markov Chains. To demonstrate the viability and benefit of the approach, patient care workflows were visually and quantitatively compared. The analysis of the EHR data allowed for exploration of workflow patterns and variation across groups. Results suggest that workflow was different for different arrival modes, settings and acuity levels,. EHRs can be used to explore workflow with statistical and visual analytics techniques novel to the health care setting. The results generated by the proposed approach could be utilized to help institutions identify workflow issues, plan for varied workflows and ultimately improve efficiency in caring for diverse patient groups. EHR data and novel analytic techniques in health care can expand our understanding of workflow in both large and small ED units. Copyright © 2015. Published by Elsevier Inc.
    Journal of Biomedical Informatics 08/2015; DOI:10.1016/j.jbi.2015.08.018 · 2.19 Impact Factor
  • Source
    • "Zheng et al. developed the " Suggested Time and Motion Procedures " that we considered for reporting in our study [29]. The data collection was performed by a neutral evaluator using a stopwatch and results were documented on a paper chart. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives The first objective of this study is to evaluate the impact of integrating a single-source system into the routine patient care documentation workflow with respect to process modifications, data quality and execution times in patient care as well as research documentation. The second one is to evaluate whether it is cost-efficient using a single-source system in in terms of achieved savings in documentation expenditures. Methods We analyzed the documentation workflow of routine patient care and research documentation in the medical field of pruritus to identify redundant and error-prone process steps. Based on this, we established a novel documentation workflow including the x4 T (exchange for Trials) system to connect hospital information systems with electronic data capture systems for the exchange of study data. To evaluate the workflow modifications, we performed a before/after analysis as well as a time-motion study. Data quality was assessed by measuring completeness, correctness and concordance of previously and newly collected data. A cost-benefit analysis was conducted to estimate the savings using x4 T per collected data element and the additional costs for introducing x4 T. Results The documentation workflow of patient care as well as clinical research was modified due to the introduction of the x4 T system. After x4 T implementation and workflow modifications, half of the redundant and error-prone process steps were eliminated. The generic x4 T system allows direct transfer of routinely collected health care data into the x4 T research database and avoids manual transcription steps. Since x4 T has been introduced in March 2012, the number of included patients has increased by about 1,000 per year. The average entire documentation time per patient visit has been significantly decreased by 70.1% (from 1,116 ± 185 to 334 ± 83 sec.). After the introduction of the x4 T system and associated workflow changes, the completeness of mandatory data elements raised from 82.2% to 100%. In case of the pruritus research study, the additional costs for introducing the x4 T system are €434.01 and the savings are 0.48ct per collected data element. So, with the assumption of a 5-year runtime and 82 collected data elements per patient, the amount of documented patients has to be higher than 1,102 to create a benefit. Conclusion Introduction of the x4 T system into the clinical and research documentation workflow can optimize the data collection workflow in both areas. Redundant and cumbersome process steps can be eliminated in the research documentation, with the result of reduced documentation times as well as increased data quality. The usage of the x4 T system is especially worthwhile in a study with a large amount of collected data or a high number of included patients.
    International Journal of Medical Informatics 08/2014; DOI:10.1016/j.ijmedinf.2014.08.007 · 2.00 Impact Factor
  • Source
    • "Ideally, context-specific evidence should guide performance expectations and staffing norms [12]. One tool for collecting such evidence is the ‘time-and-motion’ study (T&M), defined as the independent and continuous observation and recording of staff activities and the time spent on these [13,14]. In these studies, the independence of the observer counters the tendency in self-reporting to over-report activities that participants view as more desirable, for example in relation to their managers’ expectations [15]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Lay or community health workers (LHWs) are an important human resource in primary health care, and contribute to improving access to care. However, optimal use of LHWs within the health system is often hampered by a poor understanding of how this cadre organizes its work. This study aimed to better understand how LHWs organize and structure their time in providing treatment and adherence support to people on TB treatment and/or antiretroviral therapy (ART) in South Africa. Fourteen LHWs participated across three low-income peri-urban communities in Cape Town. Each LHW was observed by a researcher for one day, and data collected on each activity and the time spent on it. Data were summarized in the following categories: travel to the patient's home, waiting time and patient contact time. Ninety-seven attempted visits to patients were observed, and patients were located in 69 of these. On average, LHWs conducted six visits per day, each lasting an average of nine minutes. Forty-six percent of the observed time was spent with patients, with the balance spent on 'non-contact' activities, including walking to and waiting for patients. The average walking time between patients was 8 minutes (range: 3 to 15 minutes). Activities during visits comprised medical care (that is ensuring that medication was being taken correctly and that patients were not experiencing side-effects) and social support. Other tasks included conducting home assessments to determine risks to treatment adherence, and tracing patients who had defaulted from treatment. Because of their tasks and working environment, LHWs providing support to people on TB treatment and ART in South Africa spend a substantial proportion of their time on 'non-contact' activities. Programme managers need to take this into account when developing job descriptions and determining patient case-loads for this cadre. More research is also needed to explore whether these findings apply to other tasks and settings. Strategies should be explored to mitigate the challenges that LHWs experience in locating and supporting patients, including the use of new technologies, such as mobile phones.
    Human Resources for Health 04/2014; 12(1):18. DOI:10.1186/1478-4491-12-18 · 1.83 Impact Factor
Show more