Article

Necessity of Hippocampal Neurogenesis for the Therapeutic Action of Antidepressants in Adult Nonhuman Primates

Department of Psychiatry, College of Physicians and Surgeons, Columbia University Medical Center and New York State Psychiatric Institute, New York, New York, United States of America.
PLoS ONE (Impact Factor: 3.53). 04/2011; 6(4):e17600. DOI: 10.1371/journal.pone.0017600
Source: PubMed

ABSTRACT Rodent studies show that neurogenesis is necessary for mediating the salutary effects of antidepressants. Nonhuman primate (NHP) studies may bridge important rodent findings to the clinical realm since NHP-depression shares significant homology with human depression and kinetics of primate neurogenesis differ from those in rodents. After demonstrating that antidepressants can stimulate neurogenesis in NHPs, our present study examines whether neurogenesis is required for antidepressant efficacy in NHPs. MATERIALS/METHODOLOGY: Adult female bonnets were randomized to three social pens (N = 6 each). Pen-1 subjects were exposed to control-conditions for 15 weeks with half receiving the antidepressant fluoxetine and the rest receiving saline-placebo. Pen-2 subjects were exposed to 15 weeks of separation-stress with half receiving fluoxetine and half receiving placebo. Pen-3 subjects 2 weeks of irradiation (N = 4) or sham-irradiation (N = 2) and then exposed to 15 weeks of stress and fluoxetine. Dependent measures were weekly behavioral observations and postmortem neurogenesis levels.
Exposing NHPs to repeated separation stress resulted in depression-like behaviors (anhedonia and subordinance) accompanied by reduced hippocampal neurogenesis. Treatment with fluoxetine stimulated neurogenesis and prevented the emergence of depression-like behaviors. Ablation of neurogenesis with irradiation abolished the therapeutic effects of fluoxetine. Non-stressed controls had normative behaviors although the fluoxetine-treated controls had higher neurogenesis rates. Across all groups, depression-like behaviors were associated with decreased rates of neurogenesis but this inverse correlation was only significant for new neurons in the anterior dentate gyrus that were at the threshold of completing maturation.
We provide evidence that induction of neurogenesis is integral to the therapeutic effects of fluoxetine in NHPs. Given the similarity between monkeys and humans, hippocampal neurogenesis likely plays a similar role in the treatment of clinical depression. Future studies will examine several outstanding questions such as whether neuro-suppression is sufficient for producing depression and whether therapeutic neuroplastic effects of fluoxetine are specific to antidepressants.

0 Followers
 · 
286 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ageing is associated with changes in the function of various organ systems. Changes in the cardiovascular system affect both directly and indirectly the function in a variety of organs, including the brain, with consequent neurological (motor and sensory performance) and cognitive impairments, as well as leading to the development of various psychiatric diseases. Post-stroke depression (PSD) is among the most frequent neuropsychiatric consequences of cerebral ischemia. This review discusses several animal models used for the study of PSD and summarizes recent findings in the genomic profile of the ageing brain, which are associated with age-related disorders in the elderly. Since stroke and depression are diseases with increased incidence in the elderly, great clinical benefit may especially accrue from deciphering and targeting basic mechanisms underlying PSD. Finally, we discuss the relationship between ageing, circadian rhythmicity and PSD.
    01/2013; 1(1):14. DOI:10.1186/2049-9256-1-14
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of serotonin in depression and antidepressant treatment remains unresolved despite decades of research. In this paper, we make three major claims. First, serotonin transmission is elevated in multiple depressive phenotypes, including melancholia, a subtype associated with sustained cognition. The primary challenge to this first claim is that the direct pharmacological effect of most symptom-reducing medications, such as the selective serotonin reuptake inhibitors (SSRIs), is to increase synaptic serotonin. The second claim, which is crucial to resolving this paradox, is that the serotonergic system evolved to regulate energy. By increasing extracellular serotonin, SSRIs disrupt energy homeostasis and often worsen symptoms during acute treatment. Our third claim is that symptom reduction is not achieved by the direct pharmacological properties of SSRIs, but by the brain's compensatory responses that attempt to restore energy homeostasis. These responses take several weeks to develop, which explains why SSRIs have a therapeutic delay. We demonstrate the utility of our claims by examining what happens in animal models of melancholia and during acute and chronic SSRI treatment.
    Neuroscience & Biobehavioral Reviews 02/2015; 51:164-188. DOI:10.1016/j.neubiorev.2015.01.018 · 10.28 Impact Factor
  • 08/2011; 3(6):1-172. DOI:10.4199/C00039ED1V01Y201107ISP026

Full-text (3 Sources)

Download
119 Downloads
Available from
May 29, 2014