Article

Morphogen gradient formation and action Insights from studying Bicoid protein degradation

Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
Fly (Impact Factor: 1.48). 07/2011; 5(3):242-6. DOI: 10.4161/fly.5.3.15837
Source: PubMed

ABSTRACT In a recent publication, we identified a novel F-box protein, encoded by fates-shifted (fsd), that plays a role in targeting Bcd for ubiquitination and degradation. Our analysis of mutant Drosophila embryos suggests that Bcd protein degradation is important for proper gradient formation and developmental fate specification. Here we describe further experiments that lead to an estimate of Bcd half-life, < 15 min, in embryos during the time of gradient formation. We use our findings to evaluate different models of Bcd gradient formation. With this new estimate, we simulate the Bcd gradient formation process in our own biologically realistic 2-D model. Finally, we discuss the role of Bcd-encoded positional information in controlling the positioning and precision of developmental decisions.

Full-text

Available from: Jun Ma, Jul 07, 2014
0 Followers
 · 
160 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The formation of patterns that are proportional to the size of the embryo is an intriguing but poorly understood feature of development. Molecular mechanisms controlling such proportionality, or scaling, can be probed through quantitative interrogations of the properties of morphogen gradients that instruct patterning. Recent studies of the Drosophila morphogen gradient Bicoid (Bcd), which is required for anterior-posterior (AP) patterning in the early embryo, have uncovered two distinct ways of scaling. Whereas between-species scaling is achieved by adjusting the exponential shape characteristic of the Bcd gradient profile, namely, its length scale or length constant (λ), within-species scaling is achieved through adjusting the profile's amplitude, namely, the Bcd concentration at the anterior (B0). Here, we report a case in which Drosophila melanogaster embryos exhibit Bcd gradient properties uncharacteristic of their size. The embryos under investigation were from a pair of inbred lines that had been artificially selected for egg size extremes. We show that B0 in the large embryos is uncharacteristically low but λ is abnormally extended. Although the large embryos have more total bcd mRNA than their smaller counterparts, as expected, its distribution is unusually broad. We show that the large and small embryos develop gene expression patterns exhibiting boundaries that are proportional to their respective lengths. Our results suggest that the large-egg inbred line has acquired compensating properties that counteract the extreme length of the embryos to maintain Bcd gradient properties necessary for robust patterning. Our study documents, for the first time to our knowledge, a case of within-species Bcd scaling achieved through adjusting the gradient profile's exponential shape characteristic, illustrating at a molecular level how a developmental system can follow distinct operational paths towards the goal of robust and scaled patterning.
    Development 11/2013; 141(1). DOI:10.1242/dev.098640 · 6.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Drosophila morphogen gradient of Bicoid (Bcd) initiates anterior-posterior (AP) patterning; however, it is poorly understood how its ability to activate a target gene may have an impact on this process. Here we report an F-box protein, Dampened (Dmpd) as a nuclear cofactor of Bcd that can enhance its activating potency. We establish a quantitative platform to specifically investigate two parameters of a Bcd target gene response, expression amplitude and boundary position. We show that embryos lacking Dmpd have a reduced amplitude of Bcd-activated hunchback (hb) expression at a critical time of development. This is because of a reduced Bcd-dependent transcribing probability. This defect is faithfully propagated further downstream of the AP-patterning network to alter the spatial characteristics of even-skipped (eve) stripes. Thus, unlike another Bcd-interacting F-box protein Fate-shifted (Fsd), which controls AP patterning through regulating the Bcd gradient profile, Dmpd achieves its patterning role through regulating the activating potency of Bcd.
    Nature Communications 12/2013; 4:2968. DOI:10.1038/ncomms3968 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tissue expansion and patterning are integral to development; however, it is unknown quantitatively how a mother accumulates molecular resources to invest in the future of instructing robust embryonic patterning. Here we develop a model, Tissue Expansion-Modulated Maternal Morphogen Scaling (TEM(3)S), to study scaled anterior-posterior patterning in Drosophila embryos. Using both ovaries and embryos, we measure a core quantity of the model, the scaling power of the Bicoid (Bcd) morphogen gradient's amplitude nA. We also evaluate directly model-derived predictions about Bcd gradient and patterning properties. Our results show that scaling of the Bcd gradient in the embryo originates from, and is constrained fundamentally by, a dynamic relationship between maternal tissue expansion and bcd gene copy number expansion in the ovary. This delicate connection between the two transitioning stages of a life cycle, stemming from a finite value of nA~3, underscores a key feature of developmental systems depicted by TEM(3)S.
    Nature Communications 01/2015; 6:6679. DOI:10.1038/ncomms7679 · 10.74 Impact Factor