β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat.

Division of Oral Biology, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA.
Journal of Neuroscience (Impact Factor: 6.91). 04/2011; 31(17):6277-88. DOI: 10.1523/JNEUROSCI.0450-11.2011
Source: PubMed

ABSTRACT Psychosocial stress is associated with altered immune function and development of psychological disorders including anxiety and depression. Here we show that repeated social defeat in mice increased c-Fos staining in brain regions associated with fear and threat appraisal and promoted anxiety-like behavior in a β-adrenergic receptor-dependent manner. Repeated social defeat also significantly increased the number of CD11b(+)/CD45(high)/Ly6C(high) macrophages that trafficked to the brain. In addition, several inflammatory markers were increased on the surface of microglia (CD14, CD86, and TLR4) and macrophages (CD14 and CD86) after social defeat. Repeated social defeat also increased the presence of deramified microglia in the medial amygdala, prefrontal cortex, and hippocampus. Moreover, mRNA analysis of microglia indicated that repeated social defeat increased levels of interleukin (IL)-1β and reduced levels of glucocorticoid responsive genes [glucocorticoid-induced leucine zipper (GILZ) and FK506 binding protein-51 (FKBP51)]. The stress-dependent changes in microglia and macrophages were prevented by propranolol, a β-adrenergic receptor antagonist. Microglia isolated from socially defeated mice and cultured ex vivo produced markedly higher levels of IL-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 after stimulation with lipopolysaccharide compared with microglia from control mice. Last, repeated social defeat increased c-Fos activation in IL-1 receptor type-1-deficient mice, but did not promote anxiety-like behavior or microglia activation in the absence of functional IL-1 receptor type-1. These findings indicate that repeated social defeat-induced anxiety-like behavior and enhanced reactivity of microglia was dependent on activation of β-adrenergic and IL-1 receptors.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stress-induced hormones can alter the inflammatory response to tissue injury, however, the precise mechanism by which epinephrine influences inflammatory response and wound healing is not well defined. Here we demonstrate that epinephrine alters the neutrophil (PMN)-dependent inflammatory response to a cutaneous wound. Using non-invasive real-time imaging of genetically-tagged PMNs in a murine skin wound, chronic, epinephrine-mediated stress was modeled by sustained delivery of epinephrine. Prolonged systemic exposure of epinephrine resulted in persistent PMN trafficking to the wound site via an IL-6 mediated mechanism, and this in turn impaired wound repair. Further, we demonstrate that β2 adrenergic receptor-dependent activation of pro-inflammatory macrophages is critical for epinephrine-mediated IL-6 production. This study expands our current understanding of stress hormone-mediated impairment of wound healing and provides an important mechanistic link to explain how epinephrine stress exacerbates inflammation via increased number and lifetime of PMNs.Journal of Investigative Dermatology accepted article preview online, 11 October 2013. doi:10.1038/jid.2013.415.
    Journal of Investigative Dermatology 10/2013; · 6.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to stress or traumatic events can lead to the development of depression and anxiety disorders. In addition to the debilitating consequences on mental health, patients with psychiatric disorders also suffer from autonomic imbalance, making them susceptible to a variety of medical disorders. Emerging evidence utilizing spectral analysis of heart rate variability (HRV), a reliable non-invasive measure of cardiovascular autonomic regulation, indicates that patients with depression and various anxiety disorders (i.e., panic, social, generalized anxiety disorders, and post traumatic stress disorder) are characterized by decreased HRV. Social stressors in rodents are ethologically relevant experimental stressors that recapitulate many of the dysfunctional behavioral and physiological changes that occur in psychological disorders. In this review, evidence from clinical studies and preclinical stress models identify putative biomarkers capable of precipitating the comorbidity between disorders of the mind and autonomic dysfunction. Specifically, the role of corticotropin releasing factor, neuropeptide Y and inflammation are investigated. The impetus for this review is to highlight stress-related biomarkers that may prove critical in the development of autonomic imbalance in stress -related psychiatric disorders.
    Frontiers in Psychology 01/2014; 5:950. · 2.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microglia participate in innate inflammatory responses within the central nervous system. The highly conserved microRNA-9 (miR-9) plays critical roles in neurogenesis as well as axonal extension. Its role in microglial inflammatory responses, however, remains poorly understood. Here we identify a unique role of miR-9 in mediating the microglial inflammatory response via distinct signalling pathways. MiR-9-mediated regulation of cellular activation involved downregulated expression of the target protein, monocyte chemotactic protein-induced protein 1 (MCPIP1) that is crucial for controlling inflammation. Results indicate that miR-9-mediated cellular activation involved signalling via the NF-κB pathway, but not the β-catenin pathway.
    Nature Communications 01/2014; 5:4386. · 10.74 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014