Article

Milk production and nutrient digestibility by dairy cows when fed exogenous amylase with coarsely ground dry corn.

Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691, USA.
Journal of Dairy Science (Impact Factor: 2.57). 05/2011; 94(5):2492-9. DOI: 10.3168/jds.2010-3766
Source: PubMed

ABSTRACT The digestibility of starch provided by coarsely ground corn is often low, which reduces the digestible energy (DE) concentration of the diet. We hypothesized that adding exogenous amylase to diets based on coarsely ground dent corn would increase dietary DE resulting in greater milk production. Total-tract nutrient digestibility was measured in a partially replicated Latin square experiment (6 cows and 4 periods) with a 2 × 2 factorial arrangement of treatments. Diets had 26 or 31% starch with or without exogenous amylase (amylase was added to the concentrate mixes at the feed mill). In the low and high starch diets, coarsely ground dry corn (mean particle size=1.42 mm) provided 43 and 62% of total dietary starch (corn silage provided most of the remaining starch). No treatment interactions were observed. High starch diets had greater dry matter (DM), organic matter, and energy digestibility than low starch diets, and diets with amylase had greater neutral detergent fiber digestibility than diets without amylase. Digestibility of starch averaged 88% and was not affected by treatment. A long-term (98-d) lactation study with 48 Holstein cows (74 d in milk) was conducted using 3 of the diets (low starch diets with and without amylase and the high starch diet without amylase). Addition of amylase to a diet with 26% starch did not affect intake, milk yield, milk composition, body weight, or body condition. Cows fed the diet with 31% starch had greater DM and DE intakes; yields of milk, fat, and protein; and feed efficiency than those fed diets with 26% starch. Milk composition was not affected by starch concentration. Adding exogenous amylase to a lower starch diet did not make the diet nutritionally equivalent to a higher starch diet.

0 Bookmarks
 · 
85 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have observed positive effects of both sucrose and exogenous amylase on the productivity of dairy cattle. Our objective was to evaluate direct effects and interactions of amylase and sucrose on dry matter intake (DMI), milk production, and milk components. Forty-eight multiparous Holstein cows between 70 and 130 d in milk were randomly assigned to each of 4 pens (12 cows/pen). Pens were randomly assigned to treatment sequence in a 4 × 4 Latin square design, balanced for carryover effects. Treatment periods were 28 d, with 24 d for diet adaptation and 4 d for sample and data collection. The treatments were a control diet (36% NDF and 21% starch), the control diet with amylase [0.5 g/kg of DM; Ronozyme RumiStar 600 (CT); DSM Nutritional Products Ltd., Basel, Switzerland], a diet with sucrose replacing corn grain at 2% of DM, and the sucrose diet with amylase (0.5 g/kg of DM). All data were analyzed with mixed models, including the fixed effects of sugar, amylase, and their interaction, and the random effects of period and pen. Milk data included the random effects of cow nested within pen and pen × period to provide the error term for the pen-level analysis. Dry matter intake was not affected by treatments. Milk yield and milk composition were not altered by the inclusion of sucrose or amylase; however, a tendency for an amylase × sucrose interaction was observed for milk protein content, reflecting slightly lower milk protein concentrations for amylase and sucrose treatments (3.00 and 2.99 ± 0.03%) compared with the control and amylase + sucrose treatments (3.02 and 3.03 ± 0.03%). Solids-corrected and fat-corrected milk yields were not significantly altered by treatment, although the direct effect of amylase approached significance for both variables, suggesting possible small increases with amylase supplementation (∼0.5 kg/d). Feed efficiency (energy-corrected milk divided by dry matter intake) numerically increased with either amylase (1.57 ± 0.12) or sucrose (1.60 ± 0.12) treatment, but the combination of the 2 resulted in feed efficiency similar to the control treatment (both 1.50 ± 0.12). The inclusion of amylase or sucrose did not affect DMI, productivity, or feed efficiency in mid-lactation cows fed low-starch, high-fiber diets.
    Journal of Dairy Science 05/2014; · 2.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study was conducted in order to develop slaughterhouse rumen content (SRC) as a potential feed additive. The moisture content of SRC can reach 80%, and therefore an appropriate dewatering process is required before it can be used. In this study, the effects of heating temperature, heating time, and filler content during the dewatering process on the activity of various enzymes in SRC were investigated. The Box-Behnken experimental design was employed, involving a total of 45 experimental runs, consisting of three variables (heating time, heating temperature, and filler content) with three levels per variable (12, 30 and 48 hr; 60, 75 and ; 12, 22.5 and 33% for heating time, heating temperature, and filler content, respectively). For enzyme activities, xylanase, cellulase, and amylase were examined, and the results were subjected to an analysis of variance. Heating time, heating temperature and filler content had significant effects on the activity of each enzyme (p
    Journal of The Korean Society of Grassland and Forage Science. 01/2013; 33(1).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to evaluate the effect of an exogenous amylase preparation on digestion of low- and high-starch diets in dairy cattle. Rumen and total-tract nutrient digestibility were measured in a 4 × 4 Latin square design with 28-d periods using 4 first-lactation cows cannulated at the rumen and duodenum. Corn silage-based diets had 20 or 30% starch, attained by changing the composition of concentrate, with or without addition of an exogenous amylase preparation. Effects of the enzyme additive were observed on ruminal digestibility but not at the total-tract level. Ruminal digestibility of starch increased from 75% in control to 81% with amylase supplementation. This difference in ruminal starch digestion was compensated postruminally, so that the total-tract digestibility of starch was almost complete and did not differ between treatments. The amylase supplement also increased the true ruminal digestibility of organic matter but did not affect microbial N flow to the duodenum. Amylase supplement reduced the proportion of acetate and butyrate and increased that of propionate, particularly in the high-starch diet, where it tended to increase the concentration of total volatile fatty acids in the rumen. Other effects were a higher amylase activity in the solid-associated microbial community and a tendency for lower numbers of protozoa. In contrast, we observed no changes in intake, production, dry matter and fiber (neutral detergent fiber and acid detergent fiber) digestibility, or ruminal digestion, and no or small changes on selected fibrolytic and amylolytic bacteria and on the microbial community in general. We conclude that the exogenous amylase improved starch digestion in the rumen in first-lactation cows with moderate intake and production levels.
    Journal of Dairy Science 01/2014; · 2.57 Impact Factor