The low fertility of repeat-breeder cows during summer heat stress is related to a low oocyte competence to develop into blastocysts.

Departamento de Reprodução Animal da Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo, São Paulo, SP, Brazil 05508-000.
Journal of Dairy Science (Impact Factor: 2.55). 05/2011; 94(5):2383-92. DOI: 10.3168/jds.2010-3904
Source: PubMed

ABSTRACT It was hypothesized the lower fertility of repeat-breeder (RB) Holstein cows is associated with oocyte quality and this negative effect is enhanced during summer heat stress (HS). During the summer and the winter, heifers (H; n=36 and 34, respectively), peak-lactation (PL; n=37 and 32, respectively), and RB (n=36 and 31, respectively) Holstein cows were subjected to ovum retrieval to assess oocyte recovery, in vitro embryonic developmental rates, and blastocyst quality [terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and total cell number]. The environmental temperature and humidity, respiration rate, and cutaneous and rectal temperatures were recorded in both seasons. The summer HS increased the respiration rate and the rectal temperature of PL and RB cows, and increased the cutaneous temperature and lowered the in vitro embryo production of Holstein cows and heifers. Although cleavage rate was similar among groups [H=51.7% ± 4.5 (n=375), PL=37.9% ± 5.1 (n=390), RB=41.9% ± 4.5 (n=666)], blastocyst rate was compromised by HS, especially in RB cows [H=30.3% ± 4.8 (n=244) vs. 23.3% ± 6.4 (n=150), PL=22.0% ± 4.7 (n=191) vs. 14.6% ± 7.6 (n=103), RB=22.5% ± 5.4 (n=413) vs. 7.9% ± 4.3 (n=177)]. Moreover, the fragmentation rate of RB blastocysts was enhanced during the summer, compared with winter [4.9% ± 0.7 (n=14) vs. 2.2% ± 0.2 (n=78)] and other groups [H=2.5% ± 0.7 (n=13), and PL=2.7% ± 0.6 (n=14)] suggesting that the association of RB fertility problems and summer HS may potentially impair oocyte quality. Our findings provide evidence of a greater sensitivity of RB oocytes to summer HS.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Hot season is a major constraint to production and reproduction in buffaloes. The present work aimed to investigate the effect of season on ovarian function, developmental competence, and the relative abundance of gene expression in buffalo oocytes. Three experiments were conducted. In experiment 1, pairs of buffalo ovaries were collected during cold season (CS, autumn and winter) and hot season (HS, spring and summer), and the number of antral follicles was recorded. Cumulus oocyte complexes (COCs) were aspirated and evaluated according to their morphology into four Grades. In experiment 2, Grade A and B COCs collected during CS and HS were in vitro matured (IVM) for 24 hours under standard conditions at 38.5 °C in a humidified air of 5% CO2. After IVM, cumulus cells were removed and oocytes were fixed, stained with 1% aceto-orcein, and evaluated for nuclear configuration. In vitro matured buffalo oocytes harvested during CS or HS were in vitro fertilized (IVF) using frozen-thawed buffalo semen and cultured in vitro to the blastocyst stage. In experiment 3, buffalo COCs and in vitro matured oocytes were collected during CS and HS, and then snap frozen in liquid nitrogen for gene expression analysis. Total RNA was extracted from COCs and in vitro matured oocytes, and complementary DNA was synthesized; quantitative Reverse Transcription-Polymerase Chain Reaction was performed for eight candidate genes including GAPDH, ACTB, B2M, GDF9, BMP15, HSP70, and SOD2. The results indicated that HS significantly (P < 0.01) decreased the number of antral follicles and the number of COCs recovered per ovary. The number of Grade A, B, and C COCs was lower (P < 0.05) during HS than CS. In vitro maturation of buffalo oocytes during HS significantly (P < 0.01) reduced the number of oocytes reaching the metaphase II stage and increased the percentage of degenerated oocytes compared with CS. Oocytes collected during HS also showed signs of cytoplasmic degeneration. After IVF, cleavage rate was lower (P < 0.01) for oocytes collected during HS, and the percentage of oocytes arrested at the two-cell stage was higher (P < 0.01) than oocytes IVF during CS. Oocytes matured during CS showed a higher (P < 0.01) blastocyst rate than those matured during HS. Also, COCs recovered in HS showed significant (P < 0.05) upregulation of HSP70 mRNA expression compared with those recovered in CS. For in vitro matured oocytes, CS down regulated the transcript abundance of ACTB and upregulated GAPDH and HSP70 mRNA levels compared with HS condition. In conclusion, HS could impair buffalo fertility by reducing the number of antral follicles and oocyte quality. In vitro maturation of buffalo oocytes during HS impairs their nuclear and cytoplasmic maturation, fertilization, and subsequent embryo development to the morula and blastocyst stages. This could be in part because of the altered gene expression found in COCs and in vitro matured oocytes.
    Theriogenology 07/2014; · 1.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This Study was conducted at Sidi Mhamed Benali, in the province of Relizane in Algeria in order to analyze the effects of season on the artificial insemination in dairy “Holstein cows”. Information regarding the various biochemical profiles such as blood sugar, blood urea, serum calcium and phosphorus, as well as ambient temperature was carried on the day of artificial insemination (AI). The results show that cows with a failure of artificial insemination showed a hyperuremia and a hypoglycemia associated with a hypophosphatemia of (0.34 g / l), p <0.05, (0.27 g / l) with a p <0.05, (34,78 mg / l) with p <0.05 respectively during the cold season. While during the warm season, they presented hypocalcemia (68,01 mg / l). In conclusion, the seasonal effect on the failure of artificial insemination is mainly related to the nutritional status of dair y cows during the cold season and heat stress during the hot season.
    journal of experimental biology and agricultural sciences. 04/2014; 2:179-181.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study was designed to evaluate how environmental factors in a dry-summer subtropical climate in Terceira-Azores (situated in the North Atlantic Ocean: 38° 43' N 27° 12' W) can affect dairy cow (Holstein) fertility, as well as seasonal influence on in vitro oocytes maturation and embryos development. Impact of heat shock (HS) effects on in vitro oocyte's maturation and further embryo development after in vitro fertilization (IVF) was also evaluated. For such purpose the result of the first artificial insemination (AI) performed 60 to 90 days after calving of 6,300 cows were recorded for one year. In parallel, climatic data was obtained at different elevation points (n = 5) from 0 to 1,000 m and grazing points from 0 to 500 m, in Terceira island, and the temperature humidity index (THI) was calculated. For in vitro experiments, oocytes (n = 706) were collected weekly during all year, for meiotic maturation and IVF. Further, to evaluate HS effect, 891 oocytes were collected in the cold moths (December, January, February and March) and divided in three groups treated to HS for 24 h during in vitro maturation at: C (Control = 38.5°C), HS1 (39.5°C) and HS2 (40.5°C). Oocytes from each group were used for meiotic assessment and IVF. Cleavage, morula and blastocyst development were evaluated respectively on day 2, 6, and 9 after IVF. A negative correlation between cow's conception rate (CR) and THI in grazing points (-91.3%; p<0.001) was observed. Mean THI in warmer months (June, July, August and September) was 71.7±0.7 and the CR (40.2±1.5%) while in cold months THI was 62.8±0.2 and CR was 63.8±0.4%. A similar impact was obtained with in vitro results in which nuclear maturation rate (NMR) ranged from 78.4% (±8.0) to 44.3% (±8.1), while embryos development ranged from 53.8% (±5.8) to 36.3% (±3.3) in cold and warmer months respectively. In vitro HS results showed a significant decline (p<0.05) on NMR of oocytes for every 1°C rising temperature (78.4±8.0, 21.7±3.1 and 8.9±2.2, respectively for C, HS1, and HS2). Similar results were observed in cleavage rate and embryo development, showing a clear correlation (96.9 p<0.05) between NMR and embryo development with respect to temperatures. Results clearly demonstrated that, up to a THI of 70.6, a decrease in the CR occurs in first AI after calving; this impairment was confirmed with in vitro results.
    Asian Australasian Journal of Animal Sciences 02/2015; · 0.56 Impact Factor


Available from
May 17, 2014