Free Energy of Nascent-Chain Folding in the Translocon

Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
Journal of the American Chemical Society (Impact Factor: 12.11). 05/2011; 133(19):7602-7. DOI: 10.1021/ja2019299
Source: PubMed


During their synthesis, many water-soluble proteins and nearly all membrane proteins transit through a protein-conducting channel in the membrane, the Sec translocon, from where they are inserted into the lipid bilayer. Increasing evidence indicates that folding of the nascent protein begins already within the ribosomal exit tunnel in a sequence- and environment-dependent fashion. To examine the effects of the translocon on the nascent-chain folding, we have calculated the potential of mean force for α-helix formation of a 10-alanine oligopeptide as a function of its position within the translocon channel. We find that the predominant conformational states, α-helical and extended, reflect those found for the peptide in water. However, the translocon, via its surface properties and its variable diameter, shifts the equilibrium in favor of the α-helical state. Thus, we suggest that the translocon facilitates not only the insertion of membrane proteins into the bilayer but also their folding.

Download full-text


Available from: Chris Chipot, May 02, 2014
23 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Though nanomaterials such as carbon nanotubes have gained recent attention in biology and medicine, there are few studies at the single-molecule level that explore their interactions with disease-causing proteins. Using atomistic molecular-dynamics simulations, we have investigated the interactions of the monomeric Aβ(1-42) peptide with a single-walled carbon nanotube of small diameter. Starting with peptide-nanotube complexes that delineate the interactions of different segments of the peptide, we find rapid convergence in the peptide's adsorption behavior on the nanotube surface, manifested in its arrested movement, the convergence of peptide-nanotube contact areas and approach distances, and in increased peptide wrapping around the nanotube. In systems where the N-terminal domain is initially distal from nanotube, the adsorption phenomena are initiated by interactions arising from the central hydrophobic core, and precipitated by those arising from the N-terminal residues. Our simulations and free energy calculations together demonstrate that the presence of the nanotube increases the energetic favorability of the open state. We note that the observation of peptide localization could be leveraged for site-specific drug delivery, while the decreased propensity of collapse appears promising for altering kinetics of the peptide's self-assembly.
    Biophysical Journal 04/2012; 102(8):1889-96. DOI:10.1016/j.bpj.2012.03.036 · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We propose a general framework for the efficient sampling of conformational equilibria in complex systems and the generation of associated free energy hypersurfaces in terms of a set of collective variables. The method is a strategic synthesis of the adiabatic free energy dynamics approach, previously introduced by us and others, and existing schemes using Gaussian-based adaptive bias potentials to disfavor previously visited regions. In addition, we suggest sampling the thermodynamic force instead of the probability density to reconstruct the free energy hypersurface. All these elements are combined into a robust extended phase-space formalism that can be easily incorporated into existing molecular dynamics packages. The unified scheme is shown to outperform both metadynamics and adiabatic free energy dynamics in generating two-dimensional free energy surfaces for several example cases including the alanine dipeptide in the gas and aqueous phases and the met-enkephalin oligopeptide. In addition, the method can efficiently generate higher dimensional free energy landscapes, which we demonstrate by calculating a four-dimensional surface in the Ramachandran angles of the gas-phase alanine tripeptide.
    The Journal of Chemical Physics 07/2012; 137(2):024102. DOI:10.1063/1.4733389 · 2.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: -helical hairpins, consisting of a pair of closely spaced transmembrane (TM) helices that are connected by a short interfacial turn, are the simplest structural motifs found in multi-spanning membrane proteins. In naturally occurring hairpins, the presence of polar residues is common and predicted to complicate membrane insertion. We postulate that the pre-packing process offsets any energetic cost of allocating polar and charged residues within the hydrophobic environment of biological membranes. Consistent with this idea, we provide here experimental evidence demonstrating that helical hairpin insertion into biological membranes can be driven by electrostatic interactions between closely separated, poorly hydrophobic sequences. Additionally, we observe that the integral hairpin can be stabilized by a short loop heavily populated by turn-promoting residues. We conclude that the combined effect of TM-TM electrostatic interactions and tight turns plays an important role in generating the functional architecture of membrane proteins, and propose that helical hairpin motifs can be acquired within the context of the Sec61 translocon at the early stages of membrane protein biosynthesis. Taken together, these data further underline the potential complexities involved in accurately predicting TM domains from primary structures.
    Journal of Molecular Biology 12/2012; 425(4). DOI:10.1016/j.jmb.2012.12.001 · 4.33 Impact Factor
Show more