Article

Genomic Differences Between Estrogen Receptor (ER)-Positive and ER-Negative Human Breast Carcinoma Identified by Single Nucleotide Polymorphism Array Comparative Genome Hybridization Analysis

Fired Hutchinson Cancer Research Center, Seattle, WA 98109-1023, USA.
Cancer (Impact Factor: 4.9). 05/2011; 117(10):2024-34. DOI: 10.1002/cncr.25770
Source: PubMed

ABSTRACT Estrogen receptor (ER) remains one of the most important biomarkers for breast cancer subtyping and prognosis, and comparative genome hybridization has greatly contributed to the understanding of global genetic imbalance. The authors used single-nucleotide polymorphism (SNP) arrays to compare overall copy number aberrations (CNAs) as well as loss of heterozygosity (LOH) of the entire human genome in ER-positive and ER-negative breast carcinomas.
DNA was extracted from frozen tumor sections of 21 breast carcinoma specimens and analyzed with a proprietary 50K XbaI SNP array. Copy number and LOH probability values were derived for each sample. Data were analyzed using bioinformatics and computational software, and permutation tests were used to estimate the significance of these values.
There was a global increase in CNAs and LOH in ER-negative relative to ER-positive cancers. Gain of the long arm of chromosome 1 (1q) and 8q were the most obvious changes common in both subtypes: An increase in the chromosome 1 short arm (1p)/1q ratio was observed in ER-negative samples, and an increased 16p/16q ratio was observed in ER-positive samples. Significant CNAs (adjusted P<.05) in ER-negative relative to ER-positive tumors included 5q deletion, loss of 15q, and gain of 2p and 21q. Copy-neutral LOH (cnLOH) common to both ER-positive and ER-negative samples included 9p21, the p16 tumor suppressor locus, and 4q13, the RCHY1 (ring finger and CHY zinc finger domain-containing 1) oncogene locus. Of particular interest was an enrichment of 17q LOH among the ER-negative tumors, potentially suggesting breast cancer 1 gene (BRCA1) mutations.
SNP array detected both genetic imbalances and cnLOH and was capable of discriminating ER-negative breast cancer from ER-positive breast cancer.

0 Followers
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pirh2 (p53-induced RING-H2) is an E3 ubiquitin ligase that can target p53 for degradation and thereby repress a diverse group of biological activities regulated by p53. Notably, Pirh2, rather than MDM2, is the primary degrader of active p53 under conditions of DNA damage. Moreover, Pirh2 is highly expressed in multiple cancer cell lines regardless of p53 status. Recent research has shown that Pirh2 is involved in many signalling pathways related to the genesis and evolution of cancer. This review aims to summarize a comprehensive picture of the role of Pirh2 in cellular processes and its significance to tumorigenesis. Furthermore, this review focuses on its potential role as a cancer therapeutic target.
    Cancer Science 02/2011; 102(5):909-17. DOI:10.1111/j.1349-7006.2011.01899.x · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The estrogen receptor (ER) is a well-known predictor of breast cancer response to endocrine therapy. ER+ progesterone receptor (PR)- breast tumors have a poorer response to endocrine therapy and a more aggressive phenotype than ER+PR+ tumors. A comparative genomic hybridization array technique was used to examine 25 ER+PR+ and 23 ER+PR- tumors. Tissue microarrays composed of 50 ER+PR+ and 50 ER+PR- tumors were developed to validate the comparative genomic hybridization array results. The genes of interest were analyzed by fluorescence in situ hybridization. The ER+PR- group had a slightly different genomic profile when compared with ER+PR+ tumors. Chromosomes 17 and 20 contained the most overlapping gains, and chromosomes 3, 8, 9, 14, 17, 21, and 22 contained the most overlapping losses when compared with the ER+PR+ group. The gained regions, 17q23.2-q23.3 and 20q13.12, and the lost regions, 3p21.32-p12.3, 9pter-p13.2, 17pter-p12, and 21pter-q21.1, occurred at different alteration frequencies and were statistically significant in the ER+PR- tumors compared with the ER+PR+ tumors. ER+PR- breast tumors have a different genomic profile compared with ER+PR+ tumors. Differentially lost regions in the ER+PR- group included genes with tumor suppressor functions and genes involved in apoptosis, mitosis, angiogenesis, and cell spreading. Differentially gained regions included genes such as MAP3K3, RPS6KB1, and ZNF217. Amplification of these genes could contribute to resistance to apoptosis, increased activation of the PI3K/Akt/mTOR pathway, and the loss of PR in at least some ER+PR- tumors.
    Cancer Genetics 04/2012; 205(4):138-46. DOI:10.1016/j.cancergen.2012.01.001 · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Betel Quid (BQ) chewing independently contributes to oral, hepatic and esophageal carcinomas. Strong association of breast cancer risk with BQ chewing in Northeast Indian population has been reported where this habit is prodigal. We investigated genomic alterations in breast cancer patients with and without BQ chewing exposure. Twenty six BQ chewers (BQC) and 17 non BQ chewer (NBQC) breast cancer patients from Northeast India were analyzed for genomic alterations and pathway networks using SNP array and IPA. BQC tumors showed significantly (P<0.01) higher total number of alterations, as compared with NBQC tumors, 48 ± 17% versus 32 ± 25 respectively. Incidence of gain in fragile sites in BQC tumors were significantly (P<0.001) higher as compared with NBQC tumors, 34 versus 23% respectively. Two chromosomal regions (7q33 and 21q22.13) were significantly (p<0.05) associated with BQC tumors while two regions (19p13.3-19p12 and 20q11.22) were significantly associated with NBQC tumors. GO terms oxidoreductase and aldo-keto reductase activity in BQC tumors in contrast to G-protein coupled receptor protein signaling pathway and cell surface receptor linked signal transduction in NBQC tumors were enriched in DAVID. One network "Drug Metabolism, Molecular Transport, Nucleic Acid Metabolism" including genes AKR1B1, AKR1B10, ETS2 etc in BQC and two networks "Molecular Transport, Nucleic Acid Metabolism, Small Molecule Biochemistry" and "Cellular Development, Embryonic Development, Organismal Development" including genes RPN2, EMR3, VAV1, NNAT and MUC16 etc were seen in NBQC. Common alterations (>30%) were seen in 27 regions. Three networks were significant in common regions with key roles of PTK2, RPN2, EMR3, VAV1, NNAT, MUC16, MYC and YWHAZ genes. These data show that breast cancer arising by environmental carcinogens exemplifies genetic alterations differing from those observed in the non exposed ones. A number of genetic changes are shared in both tumor groups considered as crucial in breast cancer progression.
    PLoS ONE 08/2012; 7(8):e43789. DOI:10.1371/journal.pone.0043789 · 3.53 Impact Factor
Show more

Preview

Download
0 Downloads