Article

fMRI of the face-processing network in the ventral temporal lobe of awake and anesthetized macaques.

Max Planck Institute for Biological Cybernetics, Spemannstrasse 38, 72076, Tübingen, Germany.
Neuron (Impact Factor: 15.98). 04/2011; 70(2):352-62. DOI: 10.1016/j.neuron.2011.02.048
Source: PubMed

ABSTRACT The primate brain features specialized areas devoted to processing of faces, which human imaging studies localized in the superior temporal sulcus (STS) and ventral temporal cortex. Studies in macaque monkeys, in contrast, revealed face selectivity predominantly in the STS. While this discrepancy could result from a true species difference, it may simply be the consequence of technical difficulties in obtaining high-quality MR images from the ventral temporal lobe. By using an optimized fMRI protocol we here report face-selective areas in ventral TE, the parahippocampal cortex, the entorhinal cortex, and the hippocampus of awake macaques, in addition to those already known in the STS. Notably, the face-selective activation of these memory-related areas was observed although the animals were passively viewing and it was preserved even under anesthesia. These results point to similarly extensive cortical networks for face processing in humans and monkeys and highlight potential homologs of the human fusiform face area.

Full-text

Available from: Andreas S Tolias, Feb 28, 2014
1 Follower
 · 
178 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several visual areas within the STS of the macaque brain respond strongly to faces and other biological stimuli. Determining the principles that govern neural responses in this region has proven challenging, due in part to the inherently complex stimulus domain of dynamic biological stimuli that are not captured by an easily parameterized stimulus set. Here we investigated neural responses in one fMRI-defined face patch in the anterior fundus (AF) of the STS while macaques freely view complex videos rich with natural social content. Longitudinal single-unit recordings allowed for the accumulation of each neuron's responses to repeated video presentations across sessions. We found that individual neurons, while diverse in their response patterns, were consistently and deterministically driven by the video content. We used principal component analysis to compute a family of eigenneurons, which summarized 24% of the shared population activity in the first two components. We found that the most prominent component of AF activity reflected an interaction between visible body region and scene layout. Close-up shots of faces elicited the strongest neural responses, whereas far away shots of faces or close-up shots of hindquarters elicited weak or inhibitory responses. Sensitivity to the apparent proximity of faces was also observed in gamma band local field potential. This category-selective sensitivity to spatial scale, together with the known exchange of anatomical projections of this area with regions involved in visuospatial analysis, suggests that the AF face patch may be specialized in aspects of face perception that pertain to the layout of a social scene.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 04/2015; 35(14):5537-48. DOI:10.1523/JNEUROSCI.3825-14.2015 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using functional magnetic resonance imaging in awake behaving monkeys we investigated how species-specific vocalizations are represented in auditory and auditory-related regions of the macaque brain. We found clusters of active voxels along the ascending auditory pathway that responded to various types of complex sounds: inferior colliculus (IC), medial geniculate nucleus (MGN), auditory core, belt, and parabelt cortex, and other parts of the superior temporal gyrus (STG) and sulcus (STS). Regions sensitive to monkey calls were most prevalent in the anterior STG, but some clusters were also found in frontal and parietal cortex on the basis of comparisons between responses to calls and environmental sounds. Surprisingly, we found that spectrotemporal control sounds derived from the monkey calls (“scrambled calls”) also activated the parietal and frontal regions. Taken together, our results demonstrate that species-specific vocalizations in rhesus monkeys activate preferentially the auditory ventral stream, and in particular areas of the antero-lateral belt and parabelt.
    Frontiers in Neuroscience 04/2015; 9(113). DOI:10.3389/fnins.2015.00113
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cerebral cortex of humans and macaques has specialized regions for processing faces and other visual stimulus categories. It is unknown whether a similar functional organization exists in New World monkeys, such as the common marmoset (Callithrix jacchus), a species of growing interest as a primate model in neuroscience. To address this question, we measured selective neural responses in the brain of four awake marmosets trained to fix their gaze upon images of faces, bodies, objects, and control patterns. In two of the subjects, we measured high gamma-range field potentials from electrocorticography arrays implanted over a large portion of the occipital and inferotemporal cortex. In the other two subjects, we measured BOLD fMRI responses across the entire brain. Both techniques revealed robust, regionally specific patterns of category-selective neural responses. We report that at least six face-selective patches mark the occipitotemporal pathway of the marmoset, with the most anterior patches showing the strongest preference for faces over other stimuli. The similar appearance of these patches to previous findings in macaques and humans, including their apparent arrangement in two parallel pathways, suggests that core elements of the face processing network were present in the common anthropoid primate ancestor living ∼35 million years ago. The findings also identify the marmoset as a viable animal model system for studying specialized neural mechanisms related to high-level social visual perception in humans. Copyright © 2015 the authors 0270-6474/15/351160-13$15.00/0.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 01/2015; 35(3):1160-72. DOI:10.1523/JNEUROSCI.2659-14.2015 · 6.75 Impact Factor