Article

The neuronal transporter gene SLC6A15 confers risk to major depression.

Max Planck Institute of Psychiatry, D-80804 Munich, Germany.
Neuron (Impact Factor: 15.98). 04/2011; 70(2):252-65. DOI: 10.1016/j.neuron.2011.04.005
Source: PubMed

ABSTRACT Major depression (MD) is one of the most prevalent psychiatric disorders and a leading cause of loss in work productivity. A combination of genetic and environmental risk factors probably contributes to MD. We present data from a genome-wide association study revealing a neuron-specific neutral amino acid transporter (SLC6A15) as a susceptibility gene for MD. Risk allele carrier status in humans and chronic stress in mice were associated with a downregulation of the expression of this gene in the hippocampus, a brain region implicated in the pathophysiology of MD. The same polymorphisms also showed associations with alterations in hippocampal volume and neuronal integrity. Thus, decreased SLC6A15 expression, due to genetic or environmental factors, might alter neuronal circuits related to the susceptibility for MD. Our convergent data from human genetics, expression studies, brain imaging, and animal models suggest a pathophysiological mechanism for MD that may be accessible to drug targeting.

Download full-text

Full-text

Available from: Henning Tiemeier, Jun 30, 2015
0 Followers
 · 
240 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Strategies to dissect phenotypic and genetic heterogeneity of major depressive disorder (MDD) have mainly relied on subphenotypes, such as age at onset (AAO) and recurrence/episodicity. Yet, evidence on whether these subphenotypes are familial or heritable is scarce. The aims of this study are to investigate the familiality of AAO and episode frequency in MDD and to assess the proportion of their variance explained by common single nucleotide polymorphisms (SNP heritability). For investigating familiality, we used 691 families with 2-5 full siblings with recurrent MDD from the DeNt study. We fitted (square root) AAO and episode count in a linear and a negative binomial mixed model, respectively, with family as random effect and adjusting for sex, age and center. The strength of familiality was assessed with intraclass correlation coefficients (ICC). For estimating SNP heritabilities, we used 3468 unrelated MDD cases from the RADIANT and GSK Munich studies. After similarly adjusting for covariates, derived residuals were used with the GREML method in GCTA (genome-wide complex trait analysis) software. Significant familial clustering was found for both AAO (ICC = 0.28) and episodicity (ICC = 0.07). We calculated from respective ICC estimates the maximal additive heritability of AAO (0.56) and episodicity (0.15). SNP heritability of AAO was 0.17 (p = 0.04); analysis was underpowered for calculating SNP heritability of episodicity. AAO and episodicity aggregate in families to a moderate and small degree, respectively. AAO is under stronger additive genetic control than episodicity. Larger samples are needed to calculate the SNP heritability of episodicity. The described statistical framework could be useful in future analyses.
    Psychological Medicine 02/2015; 45(10):1-11. DOI:10.1017/S0033291715000215 · 5.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Major depression is the commonest psychiatric disorder and in the U.S. has the greatest impact of all biomedical diseases on disability. Here we review evidence of the genetic contribution to disease susceptibility and the current state of molecular approaches. Genome-wide association and linkage results provide constraints on the allele frequencies and effect sizes of susceptibility loci, which we use to interpret the voluminous candidate gene literature. We consider evidence for the genetic heterogeneity of the disorder and the likelihood that subtypes exist that represent more genetically homogenous conditions than have hitherto been analyzed.
    Neuron 02/2014; 81(3):484-503. DOI:10.1016/j.neuron.2014.01.027 · 15.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide studies in major depression have identified few replicated associations, potentially due to heterogeneity within the disorder. Several studies have suggested that age at onset (AAO) can distinguish sub-types of depression with specific heritable components. This paper investigates the role of AAO in the genetic susceptibility for depression using genome-wide association data on 2,746 cases and 1,594 screened controls from the RADIANT studies, with replication performed in 1,471 cases and 1,403 controls from two Munich studies. Three methods were used to analyze AAO: First a time-to-event analysis with controls censored, secondly comparing controls to case-subsets defined using AAO cut-offs, and lastly analyzing AAO as a quantitative trait. In the time-to-event analysis three SNPs reached suggestive significance (P < 5E-06), overlapping with the original case-control analysis of this study. In a case-control analysis using AAO thresholds, SNPs in 10 genomic regions showed suggestive association though again none reached genome-wide significance. Lastly, case-only analysis of AAO as a quantitative trait resulted in 5 SNPs reaching suggestive significance. Sex specific analysis was performed as a secondary analysis, yielding one SNP reaching genome-wide significance in early-onset males. No SNPs achieved significance in the replication study after correction for multiple testing. Analysis of AAO as a quantitative trait did suggest that, across all SNPs, common genetic variants explained a large proportion of the variance (51%, P = 0.04). This study provides the first focussed analysis of the genetic contribution to AAO in depression, and establishes a statistical framework that can be applied to a quantitative trait underlying any disorder. © 2012 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part B Neuropsychiatric Genetics 08/2012; 159B(7):859-68. DOI:10.1002/ajmg.b.32093 · 3.27 Impact Factor