Resistance Mutations Define Specific Antiviral Effects for Inhibitors of the Hepatitis C Virus p7 Ion Channel

Section of Oncology and Clinical Research, Leeds Institute of Molecular Medicine, St. James's University Hospital, Leeds, United Kingdom.
Hepatology (Impact Factor: 11.19). 07/2011; 54(1):79-90. DOI: 10.1002/hep.24371
Source: PubMed

ABSTRACT The hepatitis C virus (HCV) p7 ion channel plays a critical role during infectious virus production and represents an important new therapeutic target. Its activity is blocked by structurally distinct classes of small molecules, with sensitivity varying between isolate p7 sequences. Although this is indicative of specific protein-drug interactions, a lack of high-resolution structural information has precluded the identification of inhibitor binding sites, and their modes of action remain undefined. Furthermore, a lack of clinical efficacy for existing p7 inhibitors has cast doubt over their specific antiviral effects. We identified specific resistance mutations that define the mode of action for two classes of p7 inhibitor: adamantanes and alkylated imino sugars (IS). Adamantane resistance was mediated by an L20F mutation, which has been documented in clinical trials. Molecular modeling revealed that L20 resided within a membrane-exposed binding pocket, where drug binding prevented low pH-mediated channel opening. The peripheral binding pocket was further validated by a panel of adamantane derivatives as well as a bespoke molecule designed to bind the region with high affinity. By contrast, an F25A polymorphism found in genotype 3a HCV conferred IS resistance and confirmed that these compounds intercalate between p7 protomers, preventing channel oligomerization. Neither resistance mutation significantly reduced viral fitness in culture, consistent with a low genetic barrier to resistance occurring in vivo. Furthermore, no cross-resistance was observed for the mutant phenotypes, and the two inhibitor classes showed additive effects against wild-type HCV. CONCLUSION: These observations support the notion that p7 inhibitor combinations could be a useful addition to future HCV-specific therapies.

Download full-text


Available from: Stephen d. c. Griffin, Apr 17, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein p7 of HCV is a 63 amino acid channel forming membrane protein essential for the progression of viral infection. With this momentousness, p7 emerges as an important target for antiviral therapy. A series of small molecule drugs, such as amantadine, rimantadine, amiloride, hexamethylene amiloride, NN-DNJ and BIT225 have been found to affect the channel activity. These compounds are docked against monomeric and hexameric structures of p7 taken at various time steps from a molecular dynamics simulation of the protein embedded in a hydrated lipid bilayer. The energetics of binding identifies the guanidine based ligands as the most potent ligands. The adamantanes and NN-DNJ show weaker binding energies. The lowest energy poses are those at the site of the loop region for the monomer and hexamer. For the latter, the poses show a tendency of the ligand to face the lumen of the pore. The mode of binding is that of a balance between hydrophobic interactions and hydrogen bond formation with backbone atoms of the protein.
    Computational Biology and Chemistry 11/2014; 53. DOI:10.1016/j.compbiolchem.2014.11.001 · 1.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis C virus (HCV) is a major global health burden with 2-3% of the world׳s population being chronically infected. Persistent infection can lead to cirrhosis and hepatocellular carcinoma. Recently available treatment options show enhanced efficacy of virus clearance, but are associated with resistance and significant side effects. This warrants further research into the basic understanding of viral proteins and their pathophysiology. The p7 protein of HCV is an integral membrane protein that forms an ion-channel. The role of p7 in the HCV life cycle is presently uncertain, but most of the research performed to date highlights its role in the virus assembly process. The aim of this review is to provide an overview of the literature investigating p7, its structural and functional details, and to summarize the developments to date regarding potential anti-p7 compounds. A better understanding of this protein may lead to development of a new and effective therapy.
    Virology 07/2014; 462-463. DOI:10.1016/j.virol.2014.04.018 · 3.28 Impact Factor
  • Source