Article

Extinction learning of rewards in the rat: is there a role for CB1 receptors?

Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 2120, USA.
Psychopharmacology (Impact Factor: 3.99). 04/2011; 217(2):189-97. DOI: 10.1007/s00213-011-2275-7
Source: PubMed

ABSTRACT Endocannabinoids have been widely studied in the context of addiction and reward due to their role in reinstatement. However, little is known about the role of CB1 receptors during extinction learning of an appetitively motivated task.
The aim of this study was to evaluate the role of endocannabinoids at different stages of extinction learning.
Endocannabinoid signaling was disrupted by injecting the CB1 receptor antagonist rimonabant (0, 200, 300 μg/kg i.v.) during the acquisition or consolidation phases of learning. The rate of extinction and its half-life were analyzed, as well as food-seeking in a reward-induced reinstatement test. We further investigated the interaction between extinction and endocannabinoids in different groups of rats that received drug treatments but did not undergo extinction training (abstinence). In addition, the effects of rimonabant on cue retrieval were investigated in a cue-induced reinstatement test in which rimonabant (0, 300 μg/kg i.v.) was given immediately prior to the reinstatement session.
Blockade of CB1 receptors during acquisition or consolidation of extinction learning had no effect on the rate extinction or its half-life and these pretreatments had no long term consequences on reward-seeking behavior. Furthermore, rats that underwent extinction training responded at lower levels than those that received the drug in the absence of extinction (p = 0.000, η (2) = 0.40). Rimonabant was effective in inhibiting behavior only if it was immediately given before a cue-induced reinstatement session (p = 0.000, η (2) = 0.92).
The present results clarify and isolate the role of endocannabinoids in reinstatement as key mediators of cue retrieval, rather than orchestrators of extinction learning processes.

1 Follower
 · 
118 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) may be a core component in the common molecular pathways for drug addiction. Moreover, studies using animal models of drug addiction have demonstrated that changing CaMKII activity or expression influences animals' responses to the drugs of abuse. Here, we explored the roles of CaMKII in the nucleus accumbens (NAc) shell in the extinction and reinstatement of morphine-seeking behavior. Rats were trained to obtain intravenous morphine infusions through poking hole on a fixed-ratio one schedule. Selective CaMKII inhibitor myristoylated autocamtide-2-inhibitory peptide (myr-AIP) was injected into the NAc shell of rats after the acquisition of morphine self-administration (SA) or before the reinstatement test. The results demonstrated that injection of myr-AIP after acquisition of morphine SA did not influence morphine-seeking in the following extinction days and the number of days spent for reaching extinction criterion. However, pretreatment with myr-AIP before the reinstatement test blocked the reinstatement of morphine-seeking behavior induced by morphine-priming. Our results strongly indicate that CaMKII activity in the NAc shell is essential to the relapse to morphine-seeking.
    Neuroscience Letters 05/2012; 518(2):167-71. DOI:10.1016/j.neulet.2012.05.003 · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reconsolidation is the process whereby consolidated memories are destabilized upon retrieval and restabilized to persist for later use. Although the neurobiology of the reconsolidation of both appetitive and aversive memories has been intensively investigated, reconsolidation of memories of physiologically relevant social rewards has received little attention. Social play, the most characteristic social behaviour displayed by young mammals, is highly rewarding, illustrated by the fact that it can induce conditioned place preference (CPP). Here, we investigated the role of signalling mechanisms implicated in memory processes, including reconsolidation, namely glucocorticoid, mineralocorticoid, NMDA glutamatergic and CB1 cannabinoid receptors, in the reconsolidation of social play-induced CPP in rats. Systemic treatment with the glucocorticoid receptor antagonist mifepristone before, but not immediately after, retrieval disrupted the reconsolidation of social play-induced CPP. Mifepristone did not affect social play-induced CPP in the absence of memory retrieval. Treatment with the NMDA receptor antagonist MK-801 modestly affected the reconsolidation of social play-induced CPP. However, the reconsolidation of social play-induced CPP was not affected by treatment with the mineralocorticoid and CB1 cannabinoid receptor antagonists spironolactone and rimonabant, respectively. We conclude that glucocorticoid neurotransmission mediates the reconsolidation of social reward-related memories in rats. These data indicate that the neural mechanisms of the reconsolidation of social reward-related memories only partially overlap with those underlying the reconsolidation of other reward-related memories.
    Behavioural pharmacology 06/2014; 25(3):216-25. DOI:10.1097/FBP.0000000000000039 · 2.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mesolimbic dopamine (DA) system plays an integral role in incentive motivation and reward seeking and a growing body of evidence identifies signal transduction at cannabinoid receptors as a critical modulator of this system. Indeed, administration of exogenous cannabinoids results in burst firing of DA neurons of the ventral tegmental area and increases extracellular DA in the nucleus accumbens (NAcc). Implementation of fast-scan cyclic voltammetry (FSCV) confirms the ability of cannabinoids to augment DA within the NAcc on a subsecond timescale. The use of FSCV along with newly developed highly selective pharmacological compounds advances our understanding of how cannabinoids influence DA transmission and highlights a role for endocannabinoid-modulated subsecond DAergic activation in the incentive motivational properties of not only external, but also internal reward-predictive cues. For example, our laboratory has recently demonstrated that in mice responding under a fixed-interval (FI) schedule for food reinforcement, fluctuations in NAcc DA signal the principal cue predictive of reinforcer availability - time. That is, as the interval progresses, NAcc DA levels decline leading to accelerated food seeking and the resulting characteristic FI scallop pattern of responding. Importantly, administration of WIN 55,212-2, a synthetic cannabinoid agonist, or JZL184, an indirect cannabinoid agonist, increases DA levels during the interval and disrupts this pattern of responding. Along with a wealth of other reports, these results illustrate the role of cannabinoid receptor activation in the regulation of DA transmission and the control of temporally guided reward seeking. The current review will explore the striatal beat frequency model of interval timing as it pertains to cannabinoid signaling and propose a neurocircuitry through which this system modulates interoceptive time cues.
    Frontiers in Psychiatry 09/2014; 5:118. DOI:10.3389/fpsyt.2014.00118

Preview

Download
1 Download
Available from