Article

Identification of key factors that reduce the variability of the single photon response

Construction Technologies Institute, National Research Council, 00015 Rome, Italy.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 05/2011; 108(19):7804-7. DOI: 10.1073/pnas.1018960108
Source: PubMed

ABSTRACT Rod photoreceptors mediate vision in dim light. Their biological function is to discriminate between distinct, very low levels of illumination, i.e., they serve as reliable photon counters. This role requires high reproducibility of the response to a particular number of photons. Indeed, single photon responses demonstrate unexpected low variability, despite the stochastic nature of the individual steps in the transduction cascade. We analyzed individual system mechanisms to identify their contribution to variability suppression. These include: (i) cooperativity of the regulation of the second messengers; (ii) diffusion of cGMP and Ca(2+) in the cytoplasm; and (iii) the effect of highly localized cGMP hydrolysis by activated phosphodiesterase resulting in local saturation. We find that (i) the nonlinear relationships between second messengers and current at the plasma membrane, and the cGMP hydrolysis saturation effects, play a major role in stabilizing the system; (ii) the presence of a physical space where the second messengers move by Brownian motion contributes to stabilization of the photoresponse; and (iii) keeping Ca(2+) at its dark level has only a minor effect on the variability of the system. The effects of diffusion, nonlinearity, and saturation synergize in reducing variability, supporting the notion that the observed high fidelity of the photoresponse is the result of global system function of phototransduction.

Download full-text

Full-text

Available from: Giovanni Caruso, Jul 29, 2015
0 Followers
 · 
280 Views
  • Source
    • "Mature neurons have very sophisticated shape with large multi-branched dendritic trees and long axons that often terminate at multiple pre-synapses, transmitting the signal to many post-synaptic cells. Importantly, critical role of complex shape of the cytoplasm in the kinetics and reliability of signaling was recently demonstrated in rod photoreceptors (Bisegna et al., 2008; Caruso et al., 2011). Obviously, it is of prime interest how GRK isoforms are targeted to specialized membrane compartments in specific cell types. "
    [Show abstract] [Hide abstract]
    ABSTRACT: G protein-coupled receptor (GPCR) kinases (GRKs) are best known for their role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors and promote high affinity binding of arrestins, which precludes G protein coupling. GRKs have a multidomain structure, with the kinase domain inserted into a loop of a regulator of G protein signaling homology domain. Unlike many other kinases, GRKs do not need to be phosphorylated in their activation loop to achieve an activated state. Instead, they are directly activated by docking with active GPCRs. In this manner they are able to selectively phosphorylate Ser/Thr residues on only the activated form of the receptor, unlike related kinases such as protein kinase A. GRKs also phosphorylate a variety of non-GPCR substrates and regulate several signaling pathways via direct interactions with other proteins in a phosphorylation-independent manner. Multiple GRK subtypes are present in virtually every animal cell, with the highest expression levels found in neurons, with their extensive and complex signal regulation. Insufficient or excessive GRK activity was implicated in a variety of human disorders, ranging from heart failure to depression to Parkinson's disease. As key regulators of GPCR-dependent and -independent signaling pathways, GRKs are emerging drug targets and promising molecular tools for therapy. Targeted modulation of expression and/or of activity of several GRK isoforms for therapeutic purposes was recently validated in cardiac disorders and Parkinson's disease.
    Pharmacology [?] Therapeutics 08/2011; 133(1):40-69. DOI:10.1016/j.pharmthera.2011.08.001 · 7.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Visual arrestin-1 plays a key role in the rapid and reproducible shutoff of rhodopsin signaling. Its highly selective binding to light-activated phosphorylated rhodopsin is an integral part of the functional perfection of rod photoreceptors. Structure-function studies revealed key elements of the sophisticated molecular mechanism ensuring arrestin-1 selectivity and paved the way to the targeted manipulation of the arrestin-1 molecule to design mutants that can compensate for congenital defects in rhodopsin phosphorylation. Arrestin-1 self-association and light-dependent translocation in photoreceptor cells work together to keep a constant supply of active rhodopsin-binding arrestin-1 monomer in the outer segment. Recent discoveries of arrestin-1 interaction with other signaling proteins suggest that it is a much more versatile signaling regulator than previously thought, affecting the function of the synaptic terminals and rod survival. Elucidation of the fine molecular mechanisms of arrestin-1 interactions with rhodopsin and other binding partners is necessary for the comprehensive understanding of rod function and for devising novel molecular tools and therapeutic approaches to the treatment of visual disorders.
    Progress in Retinal and Eye Research 07/2011; 30(6):405-30. DOI:10.1016/j.preteyeres.2011.07.002 · 9.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Signaling of single photons in rod photoreceptors decreases the concentration of the second messenger, cyclic GMP (cGMP), causing closure of cGMP-sensitive channels located in the plasma membrane. Whether the spatiotemporal profiles of the fall in cGMP are narrow and deep, or broad and shallow, has important consequences for the amplification and the fidelity of signaling. The factors that determine the cGMP profiles include the diffusion coefficient for cGMP, the spontaneous rate of cGMP hydrolysis, and the rate of cGMP synthesis, which is powerfully regulated by calcium feedback mechanisms. Here, using suction electrodes to record light-dependent changes in cGMP-activated current in living mouse rods lacking calcium feedback, we have determined the rate constant of spontaneous cGMP hydrolysis and the longitudinal cGMP diffusion coefficient. These measurements result in a fully constrained spatiotemporal model of phototransduction, which we used to determine the effect of feedback to cGMP synthesis in spatially constricting the fall of cGMP during the single-photon response of normal rods. We find that the spatiotemporal cGMP profiles during the single-photon response are optimized for maximal amplification and preservation of signal linearity, effectively operating within an axial signaling domain of ~2 μm.
    Biophysical Journal 04/2012; 102(8):1775-84. DOI:10.1016/j.bpj.2012.03.035 · 3.97 Impact Factor
Show more