Article

Small leucine-rich proteoglycans, decorin and fibromodulin, are reduced in postburn hypertrophic scar.

Wound Healing Research Group, Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Alberta, Edmonton, Alberta, Canada.
Wound Repair and Regeneration (Impact Factor: 2.76). 01/2011; 19(3):368-78. DOI: 10.1111/j.1524-475X.2011.00677.x
Source: PubMed

ABSTRACT Small leucine-rich proteoglycans (SLRPs) are extracellular matrix molecules that regulate collagen fibrillogenesis and inhibit transforming growth factor-β activity; thus, they may play a critical role in wound healing and scar formation. Hypertrophic scarring is a dermal form of fibroproliferative disorders, which occurs in over 70% of burn patients and leads to disfigurement and limitations in function. By understanding the cellular and molecular mechanisms that lead to scarring after injury, new clinical therapeutic approaches can by developed to minimize abnormal scar formation in hypertrophic scarring and other fibroproliferative disorders. To study the expression and localization of SLRPs with connective tissue cells in tissue immunohistochemistry, immunofluorescence staining, immunoblotting, and reverse-transcription polymerase chain reaction were used in normal skin and hypertrophic scar (HTS). In normal skin, there was more decorin and fibromodulin accumulation in the superficial layers than in the deeper dermal layers. The levels of decorin and fibromodulin were significantly lower in HTS, whereas biglycan was increased when compared with normal skin. There was an increased expression of biglycan, fibromodulin, and lumican in the basement membrane and around basal epithelial cells. In contrast, these proteoglycans were absent or weakly expressed in HTS. The findings suggest that down-regulation of SLRPs after wound healing in deep injuries to the skin plays an important role in the development of fibrosis and HTS.

0 Bookmarks
 · 
75 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypertrophic scar (HSc) is a fibroproliferative disorder that occurs following deep dermal injury. Lack of a relevant animal model is one barrier toward better understanding its pathophysiology. Our objective is to demonstrate that grafting split-thickness human skin onto nude mice results in survival of engrafted human skin and murine scars that are morphologically, histologically, and immunohistochemically consistent with human HSc. Twenty nude mice were xenografted with split-thickness human skin. Animals were euthanized at 30, 60, 120, and 180 days postoperatively. Eighteen controls were autografted with full-thickness nude mouse skin and euthanized at 30 and 60 days postoperatively. Scar biopsies were harvested at each time point. Blinded scar assessment was performed using a modified Manchester Scar Scale. Histologic analysis included hematoxylin and eosin, Masson's trichrome, toluidine blue, and picrosirius red staining. Immunohistochemistry included anti-human human leukocyte antigen-ABC, α-smooth muscle actin, decorin, and biglycan staining. Xenografted mice developed red, shiny, elevated scars similar to human HSc and supported by blinded scar assessment. Autograft controls appeared morphologically and histologically similar to normal skin. Xenografts survived up to 180 days and showed increased thickness, loss of hair follicles, adnexal structures and rete pegs, hypercellularity, whorled collagen fibers parallel to the surface, myofibroblasts, decreased decorin and increased biglycan expression, and increased mast cell density. Grafting split-thickness human skin onto nude mice results in persistent scars that show morphologic, histologic, and immunohistochemical consistency with human HSc. Therefore, this model provides a promising technique to study HSc formation and to test novel treatment options.
    Wound Repair and Regeneration 11/2012; · 2.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fibromodulin (FMOD) is a small leucine-rich proteoglycan required for scarless fetal cutaneous wound repair. Interestingly, increased FMOD levels have been correlated with decreased transforming growth factor (TGF)-β1 expression in multiple fetal and adult rodent models. Our previous studies demonstrated that FMOD-deficiency in adult animals results in delayed wound closure and increased scar size accompanied by loose package collagen fiber networks with increased fibril diameter. In addition, we found that FMOD modulates in vitro expression and activities of TGF-β ligands in an isoform-specific manner. In this study, temporospatial expression profiles of TGF-β ligands and receptors in FMOD-null and wild-type (WT) mice were compared by immunohistochemical staining and quantitative reverse transcriptase-polymerase chain reaction using a full-thickness, primary intention wound closure model. During the inflammatory stage, elevated inflammatory infiltration accompanied by increased type I TGF-β receptor levels in individual inflammatory cells was observed in FMOD-null wounds. This increased inflammation was correlated with accelerated epithelial migration during the proliferative stage. On the other hand, significantly more robust expression of TGF-β3 and TGF-β receptors in FMOD-null wounds during the proliferative stage was associated with delayed dermal cell migration and proliferation, which led to postponed granulation tissue formation and wound closure and increased scar size. Compared with WT controls, expression of TGF-β ligands and receptors by FMOD-null dermal cells was markedly reduced during the remodeling stage, which may have contributed to the declined collagen synthesis capability and unordinary collagen architecture. Taken together, this study demonstrates that a single missing gene, FMOD, leads to conspicuous alternations in TGF-β ligand and receptor expression at all stages of wound repair in various cell types. Therefore, FMOD critically coordinates temporospatial distribution of TGF-β ligands and receptors in vivo, suggesting that FMOD modulates TGF-β bioactivity in a complex way beyond simple physical binding to promote proper wound healing.
    PLoS ONE 01/2014; 9(3):e90817. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypertrophic scar (HTS) is a dermal form of fibroproliferative disorder which often develops after thermal or traumatic injury to the deep regions of the skin and is characterized by excessive deposition and alterations in morphology of collagen and other extracellular matrix (ECM) proteins. HTS are cosmetically disfiguring and can cause functional problems that often recur despite surgical attempts to remove or improve the scars. In this review, the roles of various fibrotic and anti-fibrotic molecules are discussed in order to improve our understanding of the molecular mechanism of the pathogenesis of HTS. These molecules include growth factors, cytokines, ECM molecules, and proteolytic enzymes. By exploring the mechanisms of this form of dermal fibrosis, we seek to provide some insight into this form of dermal fibrosis that may allow clinicians to improve treatment and prevention in the future.
    Journal of Cell Communication and Signaling 03/2013;