Hierarchical chemosensory regulation of male-male social interactions in Drosophila

Division of Biology, California Institute of Technology, Pasadena, California, USA.
Nature Neuroscience (Impact Factor: 14.98). 06/2011; 14(6):757-62. DOI: 10.1038/nn.2800
Source: PubMed

ABSTRACT Pheromones regulate male social behaviors in Drosophila, but the identities and behavioral role(s) of these chemosensory signals, and how they interact, are incompletely understood. We found that (z)-7-tricosene, a male-enriched cuticular hydrocarbon that was previously shown to inhibit male-male courtship, was essential for normal levels of aggression. The mechanisms by which (z)-7-tricosene induced aggression and suppressed courtship were independent, but both required the gustatory receptor Gr32a. Sensitivity to (z)-7-tricosene was required for the aggression-promoting effect of 11-cis-vaccenyl acetate (cVA), an olfactory pheromone, but (z)-7-tricosene sensitivity was independent of cVA. (z)-7-tricosene and cVA therefore regulate aggression in a hierarchical manner. Furthermore, the increased courtship caused by depletion of male cuticular hydrocarbons was suppressed by a mutation in the olfactory receptor Or47b. Thus, male social behaviors are controlled by gustatory pheromones that promote aggression and suppress courtship, and whose influences are dominant to olfactory pheromones that enhance these behaviors.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is evidence of a link between the circadian system and psychiatric diseases. Studies in humans and mammals suggest that environmental and/or genetic disruption of the circadian system leads to an increased liability to psychiatric disease. Disruption of clock genes and/or the clock network might be related to the etiology of these pathologies; also, some genes, known for their circadian clock functions, might be associated to mental illnesses through clock-independent pleiotropy. Here, we examine the features which we believe make Drosophila melanogaster a model apt to study the role of the circadian clock in psychiatric disease. Despite differences in the organization of the clock system, the molecular architecture of the Drosophila and mammalian circadian oscillators are comparable and many components are evolutionarily related. In addition, Drosophila has a rather complex nervous system, which shares much at the cell and neurobiological level with humans, i.e., a tripartite brain, the main neurotransmitter systems, and behavioral traits: circadian behavior, learning and memory, motivation, addiction, social behavior. There is evidence that the Drosophila brain shares some homologies with the vertebrate cerebellum, basal ganglia, and hypothalamus-pituitary-adrenal axis, the dysfunctions of which have been tied to mental illness. We discuss Drosophila in comparison to mammals with reference to the: organization of the brain and neurotransmitter systems; architecture of the circadian clock; clock-controlled behaviors. We sum up current knowledge on behavioral endophenotypes, which are amenable to modeling in flies, such as defects involving sleep, cognition, or social interactions, and discuss the relationship of the circadian system to these traits. Finally, we consider if Drosophila could be a valuable asset to understand the relationship between circadian clock malfunction and psychiatric disease.
    Frontiers in Neurology 04/2015; 6:80. DOI:10.3389/fneur.2015.00080
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aromatase-expressing neuroendocrine neurons in the vertebrate male brain synthesize estradiol from circulating testosterone. This locally produced estradiol controls neural circuits underlying courtship vocalization, mating, aggression, and territory marking in male mice. How aromatase-expressing neuronal populations control these diverse estrogen-dependent male behaviors is poorly understood, and the function, if any, of aromatase-expressing neurons in females is unclear. Using targeted genetic approaches, we show that aromatase-expressing neurons within the male posterodorsal medial amygdala (MeApd) regulate components of aggression, but not other estrogen-dependent male-typical behaviors. Remarkably, aromatase-expressing MeApd neurons in females are specifically required for components of maternal aggression, which we show is distinct from intermale aggression in pattern and execution. Thus, aromatase-expressing MeApd neurons control distinct forms of aggression in the two sexes. Moreover, our findings indicate that complex social behaviors are separable in a modular manner at the level of genetically identified neuronal populations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell Reports 01/2015; 10(4). DOI:10.1016/j.celrep.2014.12.040 · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aggressive behavior in Drosophila melanogaster serves to acquire or defense vital resources such as food, territory or access to mates. Flies learn from previous fighting experience and modify and adapt their behavior to new situations, suggesting that learning and memory play a major role in agonistic encounters. Prior fighting experience influences the outcome of later contests: losing a fight increases the probability of losing second contests, revealing the formation of a "loser" effect. In a recent publication, we developed a new behavioral arena that eliminates handling of flies prior to, during and after fights to study the learning and memory associated with aggression. We compared two handling procedures commonly used in laboratories to study aggression with the new chambers and demonstrated that handling negatively influences aggression and prevents "loser" effect formation. In addition, we observed new aspects of behavior such as the formation of robust winner effects.